BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 14533717)

  • 1. Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina.
    Selbmann L; Stingele F; Petruccioli M
    Antonie Van Leeuwenhoek; 2003; 84(2):135-45. PubMed ID: 14533717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exopolysaccharide production from Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82 on raw and hydrolysed starchy materials.
    Selbmann L; Crognale S; Petruccioli M
    Lett Appl Microbiol; 2002; 34(1):51-5. PubMed ID: 11849493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-glucan production by Botryosphaeria rhodina in different bench-top bioreactors.
    Selbmann L; Crognale S; Petruccioli M
    J Appl Microbiol; 2004; 96(5):1074-81. PubMed ID: 15078524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080.
    Selbmann L; Onofri S; Fenice M; Federici F; Petruccioli M
    Res Microbiol; 2002 Nov; 153(9):585-92. PubMed ID: 12455706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55.
    Mahapatra S; Banerjee D
    Int J Biol Macromol; 2016 Jan; 82():182-91. PubMed ID: 26592702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Glucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters.
    Crognale S; Federici F; Petruccioli M
    Biotechnol Lett; 2003 Dec; 25(23):2013-5. PubMed ID: 14719815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of beta-glucan and related glucan-hydrolases by Botryosphaeria rhodina.
    Crognale S; Bruno M; Fidaleo M; Moresi M; Petruccioli M
    J Appl Microbiol; 2007 Mar; 102(3):860-71. PubMed ID: 17309637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of a novel extracellular polysaccharide by Rhodotorula glutinis.
    Cho DH; Chae HJ; Kim EY
    Appl Biochem Biotechnol; 2001 Sep; 95(3):183-93. PubMed ID: 11732715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Botryosphaeran production by the ascomyceteous fungus Botryosphaeria sp., grown on different carbohydrate carbon sources, and their partial structural features.
    Steluti RM; Giese EC; Piggato MM; Sumiya AF; Covizzi LG; Job AE; Cardoso MS; Corradi da Silva Mde L; Dekker RF; Barbosa AM
    J Basic Microbiol; 2004; 44(6):480-6. PubMed ID: 15558819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production, structure and morphology of exopolysaccharides yielded by submerged fermentation of Antrodia cinnamomea.
    Chen L; Wang Z; Zhang B; Ge M; Ng H; Niu Y; Liu L
    Carbohydr Polym; 2019 Feb; 205():271-278. PubMed ID: 30446105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three exopolysaccharides of the beta-(1-->6)-D-glucan type and a beta-(1-->3;1-->6)-D-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit.
    Vasconcelos AF; Monteiro NK; Dekker RF; Barbosa AM; Carbonero ER; Silveira JL; Sassaki GL; da Silva R; de Lourdes Corradi da Silva M
    Carbohydr Res; 2008 Sep; 343(14):2481-5. PubMed ID: 18639868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An indigenous hyperproductive species of Aureobasidium pullulans RYLF-10: influence of fermentation conditions on exopolysaccharide (EPS) production.
    Yadav KL; Rahi DK; Soni SK
    Appl Biochem Biotechnol; 2014 Feb; 172(4):1898-908. PubMed ID: 24293276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose.
    Mendes SF; dos Santos O; Barbosa AM; Vasconcelos AF; Aranda-Selverio G; Monteiro NK; Dekker RF; Sá Pereira M; Tovar AM; Mourão PA; da Silva Mde L
    Int J Biol Macromol; 2009 Oct; 45(3):305-9. PubMed ID: 19549543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, physical characteristics and biological activities assessment of scleroglucan from a local strain Athelia rolfsii TEMG.
    Elsehemy IA; Noor El Deen AM; Awad HM; Kalaba MH; Moghannem SA; Tolba IH; Farid MAM
    Int J Biol Macromol; 2020 Nov; 163():1196-1207. PubMed ID: 32622769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures.
    Lung MY; Huang PC
    Lett Appl Microbiol; 2010 Feb; 50(2):198-204. PubMed ID: 20002574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and characterization of exopolysaccharides from an enthomopathogenic fungus Cordyceps militaris NG3.
    Kim SW; Xu CP; Hwang HJ; Choi JW; Kim CW; Yun JW
    Biotechnol Prog; 2003; 19(2):428-35. PubMed ID: 12675583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii.
    Bafana A
    Carbohydr Polym; 2013 Jun; 95(2):746-52. PubMed ID: 23648037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scleroglucan.
    Wang Y; McNeil B
    Crit Rev Biotechnol; 1996; 16(3):185-215. PubMed ID: 8856961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved cellulase production by Botryosphaeria rhodina from OPEFB at low level moisture condition through statistical optimization.
    Bahrin EK; Ibrahim MF; Abd Razak MN; Abd-Aziz S; Shah UK; Alitheen N; Salleh MM
    Prep Biochem Biotechnol; 2012; 42(2):155-70. PubMed ID: 22394064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchella esculenta.
    Taskin M; Ozkan B; Atici O; Aydogan MN
    Int J Food Sci Nutr; 2012 Aug; 63(5):597-602. PubMed ID: 22136136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.