These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 14534254)

  • 21. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons.
    Kladisios N; Wicke KD; Pätz-Warncke C; Felmy F
    J Neurosci; 2023 Apr; 43(15):2714-2729. PubMed ID: 36898837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons.
    Gazula VR; Strumbos JG; Mei X; Chen H; Rahner C; Kaczmarek LK
    J Comp Neurol; 2010 Aug; 518(16):3205-20. PubMed ID: 20575068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound stimulation modulates high-threshold K(+) currents in mouse auditory brainstem neurons.
    Leão KE; Leão RN; Deardorff AS; Garrett A; Fyffe R; Walmsley B
    Eur J Neurosci; 2010 Nov; 32(10):1658-67. PubMed ID: 20946234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons.
    Caminos E; Garcia-Pino E; Juiz JM
    J Neurosci Res; 2015 Apr; 93(4):604-14. PubMed ID: 25421809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat.
    Guinan JJ; Li RY
    Hear Res; 1990 Nov; 49(1-3):321-34. PubMed ID: 2292504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prostaglandin E2 inhibits the potassium current in sensory neurons from hyperalgesic Kv1.1 knockout mice.
    Jiang X; Zhang YH; Clark JD; Tempel BL; Nicol GD
    Neuroscience; 2003; 119(1):65-72. PubMed ID: 12763069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcna1-null mice.
    van Brederode JF; Rho JM; Cerne R; Tempel BL; Spain WJ
    Neuroscience; 2001; 103(4):921-9. PubMed ID: 11301201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperexcitability of CA3 pyramidal cells in mice lacking the potassium channel subunit Kv1.1.
    Lopantsev V; Tempel BL; Schwartzkroin PA
    Epilepsia; 2003 Dec; 44(12):1506-12. PubMed ID: 14636320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of contralateral sound stimulation on unit activity of ventral cochlear nucleus neurons.
    Shore SE; Sumner CJ; Bledsoe SC; Lu J
    Exp Brain Res; 2003 Dec; 153(4):427-35. PubMed ID: 12961054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation.
    Young ED; Sachs MB
    Neuroscience; 2008 Jun; 154(1):127-38. PubMed ID: 18343587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology.
    Sommer I; Lingenhöhl K; Friauf E
    Exp Brain Res; 1993; 95(2):223-39. PubMed ID: 8224048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding.
    Kadner A; Kulesza RJ; Berrebi AS
    J Neurophysiol; 2006 Mar; 95(3):1499-508. PubMed ID: 16319207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness.
    Leao RN; Sun H; Svahn K; Berntson A; Youssoufian M; Paolini AG; Fyffe RE; Walmsley B
    J Physiol; 2006 Mar; 571(Pt 3):563-78. PubMed ID: 16373385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory deficits of Kcna1 deletion are similar to those of a monaural hearing impairment.
    Karcz A; Allen PD; Walton J; Ison JR; Kopp-Scheinpflug C
    Hear Res; 2015 Mar; 321():45-51. PubMed ID: 25602577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The medial nucleus of the trapezoid body in the gerbil is more than a relay: comparison of pre- and postsynaptic activity.
    Kopp-Scheinpflug C; Lippe WR; Dörrscheidt GJ; Rübsamen R
    J Assoc Res Otolaryngol; 2003 Mar; 4(1):1-23. PubMed ID: 12098017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.