BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 1453459)

  • 21. Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription.
    Huang J; Villemain J; Padilla R; Sousa R
    J Mol Biol; 1999 Oct; 293(3):457-75. PubMed ID: 10543943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The T7 RNA polymerase intercalating hairpin is important for promoter opening during initiation but not for RNA displacement or transcription bubble stability during elongation.
    Brieba LG; Sousa R
    Biochemistry; 2001 Apr; 40(13):3882-90. PubMed ID: 11300767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation.
    Tang GQ; Nandakumar D; Bandwar RP; Lee KS; Roy R; Ha T; Patel SS
    PLoS One; 2014; 9(3):e91859. PubMed ID: 24651161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
    Bull JJ; Springman R; Molineux IJ
    Mol Biol Evol; 2007 Apr; 24(4):900-8. PubMed ID: 17220516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The intercalating beta-hairpin of T7 RNA polymerase plays a role in promoter DNA melting and in stabilizing the melted DNA for efficient RNA synthesis.
    Stano NM; Patel SS
    J Mol Biol; 2002 Feb; 315(5):1009-25. PubMed ID: 11827472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
    Mekler V; Minakhin L; Sheppard C; Wigneshweraraj S; Severinov K
    J Mol Biol; 2011 Nov; 413(5):1016-27. PubMed ID: 21963987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection.
    Zhang X; Studier FW
    J Mol Biol; 2004 Jul; 340(4):707-30. PubMed ID: 15223315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutations in T7 RNA polymerase that support the proposal for a common polymerase active site structure.
    Bonner G; Patra D; Lafer EM; Sousa R
    EMBO J; 1992 Oct; 11(10):3767-75. PubMed ID: 1396570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase.
    Gardner LP; Mookhtiar KA; Coleman JE
    Biochemistry; 1997 Mar; 36(10):2908-18. PubMed ID: 9062120
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of human mitochondrial RNA polymerase.
    Ringel R; Sologub M; Morozov YI; Litonin D; Cramer P; Temiakov D
    Nature; 2011 Sep; 478(7368):269-73. PubMed ID: 21947009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Visualization of bacteriophage T7 RNA-polymerase complexes with DNA template in the process of transcription elongation].
    Lymans'kyĭ OP
    Ukr Biokhim Zh (1999); 2007; 79(1):94-103. PubMed ID: 18030738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single crystals of a chimeric T7/T3 RNA polymerase with T3 promoter specificity and a nonprocessive T7 RNAP mutant.
    Sousa R; Chung YJ; McAllister WT; Wang BC; Lafer EM
    J Biol Chem; 1990 Dec; 265(35):21430-2. PubMed ID: 2254305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T7 RNA polymerases backed up by covalently trapped proteins catalyze highly error prone transcription.
    Nakano T; Ouchi R; Kawazoe J; Pack SP; Makino K; Ide H
    J Biol Chem; 2012 Feb; 287(9):6562-72. PubMed ID: 22235136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent studies of T7 RNA polymerase mechanism.
    Kochetkov SN; Rusakova EE; Tunitskaya VL
    FEBS Lett; 1998 Dec; 440(3):264-7. PubMed ID: 9872383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the interaction of T7 RNA polymerase with promoter.
    Sastry S; Ross BM
    Biochemistry; 1999 Apr; 38(16):4972-81. PubMed ID: 10213599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional architecture of T7 RNA polymerase transcription complexes.
    Nayak D; Guo Q; Sousa R
    J Mol Biol; 2007 Aug; 371(2):490-500. PubMed ID: 17580086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro promoter recognition by the catalytic subunit of plant phage-type RNA polymerases.
    Bohne AV; Teubner M; Liere K; Weihe A; Börner T
    Plant Mol Biol; 2016 Oct; 92(3):357-69. PubMed ID: 27497992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of two types of termination signal for bacteriophage T7 RNA polymerase.
    Macdonald LE; Durbin RK; Dunn JJ; McAllister WT
    J Mol Biol; 1994 Apr; 238(2):145-58. PubMed ID: 8158645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7.
    Ye F; Kotta-Loizou I; Jovanovic M; Liu X; Dryden DT; Buck M; Zhang X
    Elife; 2020 Feb; 9():. PubMed ID: 32039758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.