BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14534904)

  • 1. Comparative study of spiculogenesis in demosponge and hexactinellid larvae.
    Leys SP
    Microsc Res Tech; 2003 Nov; 62(4):300-11. PubMed ID: 14534904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber diffraction study of spicules from marine sponges.
    Croce G; Frache A; Milanesio M; Viterbo D; Bavestrello G; Benatti U; Giovine M; Amenitsch H
    Microsc Res Tech; 2003 Nov; 62(4):378-81. PubMed ID: 14534910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral sensitivity in a sponge larva.
    Leys SP; Cronin TW; Degnan BM; Marshall JN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):199-202. PubMed ID: 11976887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some aspects of silica deposition in lithistid demosponge desmas.
    Pisera A
    Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies.
    Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC
    Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis.
    Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F
    J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis.
    Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC
    J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silica deposition in Demosponges: spiculogenesis in Crambe crambe.
    Uriz MJ; Turon X; Becerro MA
    Cell Tissue Res; 2000 Aug; 301(2):299-309. PubMed ID: 10955725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni.
    Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M
    J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytological basis of photoresponsive behavior in a sponge larva.
    Leys SP; Degnan BM
    Biol Bull; 2001 Dec; 201(3):323-38. PubMed ID: 11751245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.
    Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U
    Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siliceous spicules in marine demosponges (example Suberites domuncula).
    Müller WE; Belikov SI; Tremel W; Perry CC; Gieskes WW; Boreiko A; Schröder HC
    Micron; 2006; 37(2):107-20. PubMed ID: 16242342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis.
    Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE
    J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-larval development of the commercial sponge Spongia officinalis L. (Porifera, Demospongiae).
    Gaino E; Baldacconi R; Corriero G
    Tissue Cell; 2007 Oct; 39(5):325-34. PubMed ID: 17826813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi.
    Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC
    Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules.
    Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE
    FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.