These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 14534908)
1. Molecular biology of demosponge axial filaments and their roles in biosilicification. Weaver JC; Morse DE Microsc Res Tech; 2003 Nov; 62(4):356-67. PubMed ID: 14534908 [TBL] [Abstract][Full Text] [Related]
2. Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Müller WE; Boreiko A; Wang X; Belikov SI; Wiens M; Grebenjuk VA; Schlossmacher U; Schröder HC Gene; 2007 Jun; 395(1-2):62-71. PubMed ID: 17408887 [TBL] [Abstract][Full Text] [Related]
3. Silicatein alpha: cathepsin L-like protein in sponge biosilica. Shimizu K; Cha J; Stucky GD; Morse DE Proc Natl Acad Sci U S A; 1998 May; 95(11):6234-8. PubMed ID: 9600948 [TBL] [Abstract][Full Text] [Related]
4. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules. Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Müller WE; Schlossmacher U; Eckert C; Krasko A; Boreiko A; Ushijima H; Wolf SE; Tremel W; Müller IM; Schröder HC Eur J Cell Biol; 2007 Aug; 86(8):473-87. PubMed ID: 17658193 [TBL] [Abstract][Full Text] [Related]
6. Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Müller WE; Boreiko A; Schlossmacher U; Wang X; Tahir MN; Tremel W; Brandt D; Kaandorp JA; Schröder HC Biomaterials; 2007 Oct; 28(30):4501-11. PubMed ID: 17628661 [TBL] [Abstract][Full Text] [Related]
7. Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation. Schlossmacher U; Wiens M; Schröder HC; Wang X; Jochum KP; Müller WE FEBS J; 2011 Apr; 278(7):1145-55. PubMed ID: 21284806 [TBL] [Abstract][Full Text] [Related]
8. Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Cha JN; Shimizu K; Zhou Y; Christiansen SC; Chmelka BF; Stucky GD; Morse DE Proc Natl Acad Sci U S A; 1999 Jan; 96(2):361-5. PubMed ID: 9892638 [TBL] [Abstract][Full Text] [Related]
9. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications. Shimizu K; Morse DE Methods Enzymol; 2018; 605():429-455. PubMed ID: 29909834 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of siliceous spicules from marine sponges. Croce G; Frache A; Milanesio M; Marchese L; Causà M; Viterbo D; Barbaglia A; Bolis V; Bavestrello G; Cerrano C; Benatti U; Pozzolini M; Giovine M; Amenitsch H Biophys J; 2004 Jan; 86(1 Pt 1):526-34. PubMed ID: 14695297 [TBL] [Abstract][Full Text] [Related]
11. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni. Müller WE; Boreiko A; Schlossmacher U; Wang X; Eckert C; Kropf K; Li J; Schröder HC J Exp Biol; 2008 Feb; 211(Pt 3):300-9. PubMed ID: 18203984 [TBL] [Abstract][Full Text] [Related]
12. Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. Roth KM; Zhou Y; Yang W; Morse DE J Am Chem Soc; 2005 Jan; 127(1):325-30. PubMed ID: 15631482 [TBL] [Abstract][Full Text] [Related]
13. Some aspects of silica deposition in lithistid demosponge desmas. Pisera A Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905 [TBL] [Abstract][Full Text] [Related]
15. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
16. Mesostructure from hydration gradients in demosponge biosilica. Neilson JR; George NC; Murr MM; Seshadri R; Morse DE Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700 [TBL] [Abstract][Full Text] [Related]
17. Fiber diffraction study of spicules from marine sponges. Croce G; Frache A; Milanesio M; Viterbo D; Bavestrello G; Benatti U; Giovine M; Amenitsch H Microsc Res Tech; 2003 Nov; 62(4):378-81. PubMed ID: 14534910 [TBL] [Abstract][Full Text] [Related]
18. Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. Schröder HC; Boreiko A; Korzhev M; Tahir MN; Tremel W; Eckert C; Ushijima H; Müller IM; Müller WE J Biol Chem; 2006 Apr; 281(17):12001-9. PubMed ID: 16495220 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning of silicatein gene from marine sponge Petrosia ficiformis (Porifera, Demospongiae) and development of primmorphs as a model for biosilicification studies. Pozzolini M; Sturla L; Cerrano C; Bavestrello G; Camardella L; Parodi AM; Raheli F; Benatti U; Müller WE; Giovine M Mar Biotechnol (NY); 2004; 6(6):594-603. PubMed ID: 15747092 [TBL] [Abstract][Full Text] [Related]
20. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]