These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 14534910)
1. Fiber diffraction study of spicules from marine sponges. Croce G; Frache A; Milanesio M; Viterbo D; Bavestrello G; Benatti U; Giovine M; Amenitsch H Microsc Res Tech; 2003 Nov; 62(4):378-81. PubMed ID: 14534910 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of spiculogenesis in demosponge and hexactinellid larvae. Leys SP Microsc Res Tech; 2003 Nov; 62(4):300-11. PubMed ID: 14534904 [TBL] [Abstract][Full Text] [Related]
3. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Uriz MJ; Turon X; Becerro MA; Agell G Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Müller WE; Schlossmacher U; Eckert C; Krasko A; Boreiko A; Ushijima H; Wolf SE; Tremel W; Müller IM; Schröder HC Eur J Cell Biol; 2007 Aug; 86(8):473-87. PubMed ID: 17658193 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Weaver JC; Aizenberg J; Fantner GE; Kisailus D; Woesz A; Allen P; Fields K; Porter MJ; Zok FW; Hansma PK; Fratzl P; Morse DE J Struct Biol; 2007 Apr; 158(1):93-106. PubMed ID: 17175169 [TBL] [Abstract][Full Text] [Related]
6. Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonemasieboldi. Müller WE; Wendt K; Geppert C; Wiens M; Reiber A; Schröder HC Biosens Bioelectron; 2006 Jan; 21(7):1149-55. PubMed ID: 15935634 [TBL] [Abstract][Full Text] [Related]
7. Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae. Mugnaioli E; Natalio F; Schlossmacher U; Wang X; Müller WE; Kolb U Chembiochem; 2009 Mar; 10(4):683-9. PubMed ID: 19184987 [TBL] [Abstract][Full Text] [Related]
9. A mesoporous pattern created by nature in spicules from Thetya aurantium sponge. Croce G; Viterbo D; Milanesio M; Amenitsch H Biophys J; 2007 Jan; 92(1):288-92. PubMed ID: 17056738 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of siliceous spicules from marine sponges. Croce G; Frache A; Milanesio M; Marchese L; Causà M; Viterbo D; Barbaglia A; Bolis V; Bavestrello G; Cerrano C; Benatti U; Pozzolini M; Giovine M; Amenitsch H Biophys J; 2004 Jan; 86(1 Pt 1):526-34. PubMed ID: 14695297 [TBL] [Abstract][Full Text] [Related]
11. Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. Müller WE; Kaluzhnaya OV; Belikov SI; Rothenberger M; Schröder HC; Reiber A; Kaandorp JA; Manz B; Mietchen D; Volke F J Struct Biol; 2006 Jan; 153(1):31-41. PubMed ID: 16364658 [TBL] [Abstract][Full Text] [Related]
12. Bio-sintering processes in hexactinellid sponges: fusion of bio-silica in giant basal spicules from Monorhaphis chuni. Müller WE; Wang X; Burghard Z; Bill J; Krasko A; Boreiko A; Schlossmacher U; Schröder HC; Wiens M J Struct Biol; 2009 Dec; 168(3):548-61. PubMed ID: 19683578 [TBL] [Abstract][Full Text] [Related]
13. Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. Wang X; Boreiko A; Schlossmacher U; Brandt D; Schröder HC; Li J; Kaandorp JA; Götz H; Duschner H; Müller WE J Struct Biol; 2008 Dec; 164(3):270-80. PubMed ID: 18805491 [TBL] [Abstract][Full Text] [Related]
14. Intra-epithelial spicules in a homosclerophorid sponge. Maldonado M; Riesgo A Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151 [TBL] [Abstract][Full Text] [Related]
15. Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Müller WE; Eckert C; Kropf K; Wang X; Schlossmacher U; Seckert C; Wolf SE; Tremel W; Schröder HC Cell Tissue Res; 2007 Aug; 329(2):363-78. PubMed ID: 17406901 [TBL] [Abstract][Full Text] [Related]
16. Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Müller WE; Boreiko A; Schlossmacher U; Wang X; Tahir MN; Tremel W; Brandt D; Kaandorp JA; Schröder HC Biomaterials; 2007 Oct; 28(30):4501-11. PubMed ID: 17628661 [TBL] [Abstract][Full Text] [Related]
17. Some aspects of silica deposition in lithistid demosponge desmas. Pisera A Microsc Res Tech; 2003 Nov; 62(4):312-26. PubMed ID: 14534905 [TBL] [Abstract][Full Text] [Related]
18. Organic crystal lattices in the axial filament of silica spicules of Demospongiae. Werner P; Blumtritt H; Natalio F J Struct Biol; 2017 Jun; 198(3):186-195. PubMed ID: 28323140 [TBL] [Abstract][Full Text] [Related]
19. Role of biosilica in materials science: lessons from siliceous biological systems for structural composites. Mayer G Prog Mol Subcell Biol; 2009; 47():277-94. PubMed ID: 19198782 [TBL] [Abstract][Full Text] [Related]
20. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. Müller WE; Wang X; Kropf K; Ushijima H; Geurtsen W; Eckert C; Tahir MN; Tremel W; Boreiko A; Schlossmacher U; Li J; Schröder HC J Struct Biol; 2008 Feb; 161(2):188-203. PubMed ID: 18054502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]