These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 14535304)
21. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581 [TBL] [Abstract][Full Text] [Related]
22. Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Lee SE; Lee JU; Chon HT; Lee JS Environ Geochem Health; 2008 Apr; 30(2):141-5. PubMed ID: 18286377 [TBL] [Abstract][Full Text] [Related]
23. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production. Guan CY; Tseng YH; Tsang DCW; Hu A; Yu CP J Hazard Mater; 2019 Mar; 365():137-145. PubMed ID: 30419460 [TBL] [Abstract][Full Text] [Related]
24. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415 [TBL] [Abstract][Full Text] [Related]
25. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination. Dogan NM; Kantar C; Gulcan S; Dodge CJ; Yilmaz BC; Mazmanci MA Environ Sci Technol; 2011 Mar; 45(6):2278-85. PubMed ID: 21319733 [TBL] [Abstract][Full Text] [Related]
26. Microbial electrochemical Cr(VI) reduction in a soil continuous flow system. Beretta G; Sangalli M; Sezenna E; Tofalos AE; Franzetti A; Saponaro S Integr Environ Assess Manag; 2024 Nov; 20(6):2033-2049. PubMed ID: 38953765 [TBL] [Abstract][Full Text] [Related]
27. Elemental sulfur amendment decreases bio-available Cr-VI in soils impacted by leather tanneries. Shi J; Chen H; Arocena JM; Whitcombe T; Thring RW; Memiaghe JN Environ Pollut; 2016 May; 212():57-64. PubMed ID: 26840517 [TBL] [Abstract][Full Text] [Related]
28. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. Mohamed MSM; El-Arabi NI; El-Hussein A; El-Maaty SA; Abdelhadi AA Folia Microbiol (Praha); 2020 Aug; 65(4):687-696. PubMed ID: 31989423 [TBL] [Abstract][Full Text] [Related]
29. XANES spectroscopy studies of Cr(VI) reduction by thiols in organosulfur compounds and humic substances. Szulczewski MD; Helmke PA; Bleam WF Environ Sci Technol; 2001 Mar; 35(6):1134-41. PubMed ID: 11347925 [TBL] [Abstract][Full Text] [Related]
30. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils. Chiu CC; Cheng CJ; Lin TH; Juang KW; Lee DY J Hazard Mater; 2009 Jan; 161(2-3):1239-44. PubMed ID: 18524481 [TBL] [Abstract][Full Text] [Related]
31. Nano-sized Fe Zhang Y; Li H; Gong L; Dong G; Shen L; Wang Y; Li Q J Environ Sci (China); 2017 Jul; 57():329-337. PubMed ID: 28647253 [TBL] [Abstract][Full Text] [Related]
32. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate. Choppala G; Bolan N; Kunhikrishnan A; Bush R Chemosphere; 2016 Feb; 144():374-81. PubMed ID: 26383264 [TBL] [Abstract][Full Text] [Related]
33. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060 [TBL] [Abstract][Full Text] [Related]
34. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. Aparicio JD; Lacalle RG; Artetxe U; Urionabarrenetxea E; Becerril JM; Polti MA; Garbisu C; Soto M Environ Res; 2021 Mar; 194():110666. PubMed ID: 33359700 [TBL] [Abstract][Full Text] [Related]
35. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Viti C; Pace A; Giovannetti L Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455 [TBL] [Abstract][Full Text] [Related]
36. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Megharaj M; Avudainayagam S; Naidu R Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193 [TBL] [Abstract][Full Text] [Related]
37. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488 [TBL] [Abstract][Full Text] [Related]
38. Long-term stability of organic carbon-stimulated chromate reduction in contaminated soils and its relation to manganese redox status. Tokunaga TK; Wan J; Lanzirotti A; Sutton SR; Newville M; Rao W Environ Sci Technol; 2007 Jun; 41(12):4326-31. PubMed ID: 17626432 [TBL] [Abstract][Full Text] [Related]
39. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Ibarrolaza A; Coppotelli BM; Del Panno MT; Donati ER; Morelli IS Biodegradation; 2009 Feb; 20(1):95-107. PubMed ID: 18604587 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]