These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14535335)

  • 1. Particulates, not plants, dominate nitrogen processing in a septage-treating aerated pond system.
    Hamersley MR; Howes BL; White DS
    J Environ Qual; 2003; 32(5):1895-904. PubMed ID: 14535335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of denitrification in a septage-treating artificial wetland: the dual role of particulate organic carbon.
    Hamersley MR; Howes BL
    Water Res; 2002 Oct; 36(17):4415-27. PubMed ID: 12420945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms).
    Jayaweera MW; Kasturiarachchi JC
    Water Sci Technol; 2004; 50(6):217-25. PubMed ID: 15537010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.
    Bastos RKX; Rios EN; Sánchez IA
    Water Sci Technol; 2018 Jun; 77(11-12):2635-2641. PubMed ID: 29944128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of aluminium by constructed wetlands with water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutritional conditions.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):185-93. PubMed ID: 17182390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intensity of nitrification and denitrification in subsurface-flow constructed wetlands].
    Huang J; Wang SH; Yan L; Liu Y; Wang F
    Huan Jing Ke Xue; 2007 Sep; 28(9):1965-9. PubMed ID: 17990540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.
    Chen X; Chen X; Wan X; Weng B; Huang Q
    Bioresour Technol; 2010 Dec; 101(23):9025-30. PubMed ID: 20674342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of piggery waste to nightsoil plant towards sustainable development.
    Eum Y; Oa SW; Choi E
    Water Sci Technol; 2003; 47(10):147-53. PubMed ID: 12862229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of nitrogen removal by partial nitrification-denitrification biological filter].
    Sun YX; Xu D; Tian Y; Li YF
    Huan Jing Ke Xue; 2012 Oct; 33(10):3501-6. PubMed ID: 23233980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate.
    Kyambadde J; Kansiime F; Gumaelius L; Dalhammar G
    Water Res; 2004 Jan; 38(2):475-85. PubMed ID: 14675660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium.
    Anudechakul C; Vangnai AS; Ariyakanon N
    Int J Phytoremediation; 2015; 17(7):678-85. PubMed ID: 25976881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Septage dewatering in vertical-flow constructed wetlands located in the tropics.
    Koottatep T; Polprasert C; Oanh NT; Heinss U; Montangero A; Strauss M
    Water Sci Technol; 2001; 44(2-3):181-8. PubMed ID: 11547982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of chemical oxygen demand/total Kjeldahl nitrogen ratio and sludge age on nitrification of nitrogenous wastewater.
    Sharma R; Gupta SK
    Water Environ Res; 2004; 76(2):155-61. PubMed ID: 15168847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving nitrogen removal in predenitrification-nitrification biofilters.
    Larrea L; Abad A; Gayarre J
    Water Sci Technol; 2003; 48(11-12):419-28. PubMed ID: 14753564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of
    Li J; Jiang LJ; Wang XL; Xiao L
    Huan Jing Ke Xue; 2017 Oct; 38(10):4253-4261. PubMed ID: 29965209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.
    Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H
    Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen removal performance of intermittently aerated membrane bioreactor treating black water.
    Hocaoglu SM; Atasoy E; Baban A; Insel G; Orhon D
    Environ Technol; 2013; 34(17-20):2717-25. PubMed ID: 24527634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of a pilot-scale high rate algal pond system treating abattoir wastewater in rural South Australia: nitrification and denitrification.
    Evans RA; Cromar NJ; Fallowfield HJ
    Water Sci Technol; 2005; 51(12):117-24. PubMed ID: 16114673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.