These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 14535833)

  • 1. Frequency-domain lifetime fluorometry of double-labeled creatine kinase.
    Gregor M; Kubala M; Amler E; Mejsnar J
    Physiol Res; 2003; 52(5):579-85. PubMed ID: 14535833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibrillar creatine kinase activity inferred from a 3D model.
    Mejsnar JA; Sopko B; Gregor M
    Physiol Res; 2002; 51(1):35-41. PubMed ID: 12071288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine kinase structural changes induced by substrates.
    Hornikova D; Herman P; Mejsnar J; Vecer J; Zurmanova J
    Biochim Biophys Acta; 2009 Feb; 1794(2):270-4. PubMed ID: 19049907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation and conformational changes of creatine kinase at low concentrations of hexafluoroisopropanol solutions.
    Wang XY; Meng FG; Zhou HM
    Biochem Cell Biol; 2003 Oct; 81(5):327-33. PubMed ID: 14569296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural dynamics and oligomeric interactions of Na+,K(+)-ATPase as monitored using fluorescence energy transfer.
    Amler E; Abbott A; Ball WJ
    Biophys J; 1992 Feb; 61(2):553-68. PubMed ID: 1312368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lactic acid and NaCl on creatine kinase from rabbit muscle.
    Tang HM; Ou WB; Zhou HM
    Biochem Cell Biol; 2003 Feb; 81(1):1-7. PubMed ID: 12683630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of arginine on rabbit muscle creatine kinase and salt-induced molten globule-like state.
    Ou WB; Wang RS; Lu J; Zhou HM
    Biochim Biophys Acta; 2003 Nov; 1652(1):7-16. PubMed ID: 14580992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the stability of creatine kinase isozymes.
    Guo Z; Wang Z; Wang X
    Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational heterogeneity of creatine kinase determined from phase resolved fluorometry.
    Grossman SH
    Biophys J; 1991 Mar; 59(3):590-7. PubMed ID: 2049520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creatine kinase compactness and thiol accessibility during sodium dodecyl sulfate denaturation estimated by resonance energy transfer and 2-nitro-5-thiocyanobenzoic acid cleavage.
    Clottes E; Couthon F; Denoroy L; Vial C
    Biochim Biophys Acta; 1994 Dec; 1209(2):171-6. PubMed ID: 7811687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase.
    Kucherenko IS; Soldatkin OO; Lagarde F; Jaffrezic-Renault N; Dzyadevych SV; Soldatkin AP
    Talanta; 2015 Nov; 144():604-11. PubMed ID: 26452867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific modification of rabbit muscle creatine kinase with sulfhydryl-specific fluorescence probe by use of hydrostatic pressure.
    Tanaka N; Tonai T; Kunugi S
    Biochim Biophys Acta; 1997 May; 1339(2):226-32. PubMed ID: 9187242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cysteine modification on creatine kinase aggregation.
    Zou HC; Lü ZR; Wang YJ; Zhang YM; Zou F; Park YD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):15-28. PubMed ID: 18548203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance energy transfer between the active sites of creatine kinase from rabbit brain.
    Grossman SH
    Biochim Biophys Acta; 1990 Sep; 1040(2):276-80. PubMed ID: 2400776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics of the GdmHCl-induced molten globule state of creatine kinase monitored by hydrogen exchange and mass spectrometry.
    Mazon H; Marcillat O; Forest E; Smith DL; Vial C
    Biochemistry; 2004 May; 43(17):5045-54. PubMed ID: 15109263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase reaction in skinned rat psoas muscle fibers and their myofibrils.
    Gregor M; Mejsnar J; Janovská A; Zurmanová J; Benada O; Mejsnarová B
    Physiol Res; 1999; 48(1):27-35. PubMed ID: 10470863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.