These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 14535843)

  • 1. Engineering conduits to resemble natural vascular tissue.
    Buján J; García-Honduvilla N; Bellón JM
    Biotechnol Appl Biochem; 2004 Feb; 39(Pt 1):17-27. PubMed ID: 14535843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between arterial mechanical properties, vascular biomaterial and tissue engineering.
    Kakou A; Louis H; Cattan V; Lacolley P; Thornton SN
    Clin Hemorheol Microcirc; 2007; 37(1-2):71-5. PubMed ID: 17641397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular grafts.
    Leon L; Greisler HP
    Expert Rev Cardiovasc Ther; 2003 Nov; 1(4):581-94. PubMed ID: 15030257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developments towards tissue-engineered, small-diameter arterial substitutes.
    Bordenave L; Menu P; Baquey C
    Expert Rev Med Devices; 2008 May; 5(3):337-47. PubMed ID: 18452384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development of the vascular prosthesis research].
    Zhu A; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):537-40. PubMed ID: 14565034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular tissue engineering: state of the art.
    Vara DS; Salacinski HJ; Kannan RY; Bordenave L; Hamilton G; Seifalian AM
    Pathol Biol (Paris); 2005 Dec; 53(10):599-612. PubMed ID: 16364812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose.
    Wippermann J; Schumann D; Klemm D; Kosmehl H; Salehi-Gelani S; Wahlers T
    Eur J Vasc Endovasc Surg; 2009 May; 37(5):592-6. PubMed ID: 19231251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibrin: a natural biodegradable scaffold in vascular tissue engineering.
    Shaikh FM; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Cells Tissues Organs; 2008; 188(4):333-46. PubMed ID: 18552484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of porcine carotid arteries for vascular tissue engineering applications.
    McFetridge PS; Daniel JW; Bodamyali T; Horrocks M; Chaudhuri JB
    J Biomed Mater Res A; 2004 Aug; 70(2):224-34. PubMed ID: 15227667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability of engineered vessels as arterial substitutes.
    García-Honduvilla N; Domínguez B; Pascual G; Escudero C; Minguela F; Bellón JM; Buján J
    Ann Vasc Surg; 2008 Mar; 22(2):255-65. PubMed ID: 18346580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular biomaterials for scaffold-based vascular tissue engineering.
    Couet F; Rajan N; Mantovani D
    Macromol Biosci; 2007 May; 7(5):701-18. PubMed ID: 17477449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties.
    Wise SG; Byrom MJ; Waterhouse A; Bannon PG; Weiss AS; Ng MK
    Acta Biomater; 2011 Jan; 7(1):295-303. PubMed ID: 20656079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-renewing, tissue-engineered vascular graft for arterial reconstruction.
    Torikai K; Ichikawa H; Hirakawa K; Matsumiya G; Kuratani T; Iwai S; Saito A; Kawaguchi N; Matsuura N; Sawa Y
    J Thorac Cardiovasc Surg; 2008 Jul; 136(1):37-45, 45.e1. PubMed ID: 18603051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft.
    Wu HC; Wang TW; Kang PL; Tsuang YH; Sun JS; Lin FH
    Biomaterials; 2007 Mar; 28(7):1385-92. PubMed ID: 17141865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocompatibility evaluation of poly(diol citrate) in vitro for vascular tissue engineering.
    Motlagh D; Allen J; Hoshi R; Yang J; Lui K; Ameer G
    J Biomed Mater Res A; 2007 Sep; 82(4):907-16. PubMed ID: 17335023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model.
    Mirensky TL; Nelson GN; Brennan MP; Roh JD; Hibino N; Yi T; Shinoka T; Breuer CK
    J Pediatr Surg; 2009 Jun; 44(6):1127-32; discussion 1132-3. PubMed ID: 19524728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of bioactive molecules through the walls of the medial tissue-engineered hybrid ePTFE grafts for applications in designs of vascular tissue regeneration.
    Noh I; Choi YJ; Son Y; Kim CH; Hong SH; Hong CM; Shin IS; Park SN; Park BY
    J Biomed Mater Res A; 2006 Dec; 79(4):943-53. PubMed ID: 16941597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of polyester biomaterials for tissue engineering.
    Jiao YP; Cui FZ
    Biomed Mater; 2007 Dec; 2(4):R24-37. PubMed ID: 18458475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design.
    Miller DC; Webster TJ; Haberstroh KM
    Expert Rev Med Devices; 2004 Nov; 1(2):259-68. PubMed ID: 16293046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.