BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 14536059)

  • 1. Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression.
    Edinger AL; Cinalli RM; Thompson CB
    Dev Cell; 2003 Oct; 5(4):571-82. PubMed ID: 14536059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake.
    Edinger AL; Thompson CB
    Mol Biol Cell; 2002 Jul; 13(7):2276-88. PubMed ID: 12134068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology.
    Plas DR; Talapatra S; Edinger AL; Rathmell JC; Thompson CB
    J Biol Chem; 2001 Apr; 276(15):12041-8. PubMed ID: 11278698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival.
    Rathmell JC; Fox CJ; Plas DR; Hammerman PS; Cinalli RM; Thompson CB
    Mol Cell Biol; 2003 Oct; 23(20):7315-28. PubMed ID: 14517300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability.
    Rathmell JC; Vander Heiden MG; Harris MH; Frauwirth KA; Thompson CB
    Mol Cell; 2000 Sep; 6(3):683-92. PubMed ID: 11030347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth factors regulate cell survival by controlling nutrient transporter expression.
    Edinger AL
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):225-7. PubMed ID: 15667313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival.
    Edinger AL; Thompson CB
    Oncogene; 2004 Jul; 23(33):5654-63. PubMed ID: 15133498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation.
    Barnes K; McIntosh E; Whetton AD; Daley GQ; Bentley J; Baldwin SA
    Oncogene; 2005 May; 24(20):3257-67. PubMed ID: 15735728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines.
    Nuñez G; London L; Hockenbery D; Alexander M; McKearn JP; Korsmeyer SJ
    J Immunol; 1990 May; 144(9):3602-10. PubMed ID: 2184193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway.
    Lilly M; Sandholm J; Cooper JJ; Koskinen PJ; Kraft A
    Oncogene; 1999 Jul; 18(27):4022-31. PubMed ID: 10435626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rab7 activation by growth factor withdrawal contributes to the induction of apoptosis.
    Romero Rosales K; Peralta ER; Guenther GG; Wong SY; Edinger AL
    Mol Biol Cell; 2009 Jun; 20(12):2831-40. PubMed ID: 19386765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective effects of E1B-defective adenoviruses and adenovirus E1A mutants in deficient mouse primary embryonic fibroblasts.
    Martin Duque P; Parada C; Guinea J; Sanchez-Prieto R; Ramon Y Cajal S
    Int J Oncol; 2001 Jun; 18(6):1163-7. PubMed ID: 11351246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects of pi3k/akt on abrogation of cytokine-dependency induced by oncogenic raf.
    McCubrey JA; Steelman LS; Blalock WL; Lee JT; Moye PW; Chang F; Pearce M; Shelton JG; White MK; Franklin RA; Pohnert SC
    Adv Enzyme Regul; 2001; 41():289-323. PubMed ID: 11384752
    [No Abstract]   [Full Text] [Related]  

  • 14. Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes.
    Oatey PB; Venkateswarlu K; Williams AG; Fletcher LM; Foulstone EJ; Cullen PJ; Tavaré JM
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):511-8. PubMed ID: 10567235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glucose transport by interleukin-3 in growth factor-dependent and oncogene-transformed bone marrow-derived cell lines.
    Ahmed N; Berridge MV
    Leuk Res; 1997 Jul; 21(7):609-18. PubMed ID: 9301681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway.
    Thomas A; Giesler T; White E
    Oncogene; 2000 Nov; 19(46):5259-69. PubMed ID: 11077443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system.
    Russo VC; Kobayashi K; Najdovska S; Baker NL; Werther GA
    Brain Res; 2004 May; 1009(1-2):40-53. PubMed ID: 15120582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking.
    Wieman HL; Wofford JA; Rathmell JC
    Mol Biol Cell; 2007 Apr; 18(4):1437-46. PubMed ID: 17301289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth suppression by a p14(ARF) exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status.
    Saadatmandi N; Tyler T; Huang Y; Haghighi A; Frost G; Borgstrom P; Gjerset RA
    Cancer Gene Ther; 2002 Oct; 9(10):830-9. PubMed ID: 12224024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for rab7 GTPase in growth factor-regulated cell nutrition and apoptosis.
    Snider MD
    Mol Cell; 2003 Oct; 12(4):796-7. PubMed ID: 14580329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.