These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 14536084)

  • 21. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4.
    Klinker H; Mueller-Planitz F; Yang R; Forné I; Liu CF; Nordenskiöld L; Becker PB
    PLoS One; 2014; 9(2):e88411. PubMed ID: 24516652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nucleosome-remodeling ATPase ISWI is regulated by poly-ADP-ribosylation.
    Sala A; La Rocca G; Burgio G; Kotova E; Di Gesù D; Collesano M; Ingrassia AM; Tulin AV; Corona DF
    PLoS Biol; 2008 Oct; 6(10):e252. PubMed ID: 18922045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties.
    Brehm A; Längst G; Kehle J; Clapier CR; Imhof A; Eberharter A; Müller J; Becker PB
    EMBO J; 2000 Aug; 19(16):4332-41. PubMed ID: 10944116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins.
    Poot RA; Dellaire G; Hülsmann BB; Grimaldi MA; Corona DF; Becker PB; Bickmore WA; Varga-Weisz PD
    EMBO J; 2000 Jul; 19(13):3377-87. PubMed ID: 10880450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains.
    Hota SK; Bhardwaj SK; Deindl S; Lin YC; Zhuang X; Bartholomew B
    Nat Struct Mol Biol; 2013 Feb; 20(2):222-9. PubMed ID: 23334290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex.
    Dang W; Bartholomew B
    Mol Cell Biol; 2007 Dec; 27(23):8306-17. PubMed ID: 17908792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI.
    Horton JR; Elgar SJ; Khan SI; Zhang X; Wade PA; Cheng X
    Proteins; 2007 Jun; 67(4):1198-202. PubMed ID: 17377988
    [No Abstract]   [Full Text] [Related]  

  • 28. The nucleosome remodeling factor ISWI functionally interacts with an evolutionarily conserved network of cellular factors.
    Arancio W; Onorati MC; Burgio G; Collesano M; Ingrassia AM; Genovese SI; Fanto M; Corona DF
    Genetics; 2010 May; 185(1):129-40. PubMed ID: 20194965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme.
    Whitehouse I; Stockdale C; Flaus A; Szczelkun MD; Owen-Hughes T
    Mol Cell Biol; 2003 Mar; 23(6):1935-45. PubMed ID: 12612068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of chromatin boundary activities by nucleosome-remodeling activities in Drosophila melanogaster.
    Li M; Belozerov VE; Cai HN
    Mol Cell Biol; 2010 Feb; 30(4):1067-76. PubMed ID: 19995906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Role of Non-Catalytic Domains of Hrp3 in Nucleosome Remodeling.
    Dong W; Prasad P; Lennartsson A; Ekwall K
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains.
    Ryan DP; Sundaramoorthy R; Martin D; Singh V; Owen-Hughes T
    EMBO J; 2011 May; 30(13):2596-609. PubMed ID: 21623345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler.
    Leonard JD; Narlikar GJ
    Mol Cell; 2015 Mar; 57(5):850-859. PubMed ID: 25684208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference.
    Dann GP; Liszczak GP; Bagert JD; Müller MM; Nguyen UTT; Wojcik F; Brown ZZ; Bos J; Panchenko T; Pihl R; Pollock SB; Diehl KL; Allis CD; Muir TW
    Nature; 2017 Aug; 548(7669):607-611. PubMed ID: 28767641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling.
    Strohner R; Wachsmuth M; Dachauer K; Mazurkiewicz J; Hochstatter J; Rippe K; Längst G
    Nat Struct Mol Biol; 2005 Aug; 12(8):683-90. PubMed ID: 16025127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of ISWI and its binding to chromatin during the cell cycle and early development.
    Demeret C; Bocquet S; Lemaítre JM; Françon P; Méchali M
    J Struct Biol; 2002; 140(1-3):57-66. PubMed ID: 12490154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SET domains of histone methyltransferases recognize ISWI-remodeled nucleosomal species.
    Krajewski WA; Reese JC
    Mol Cell Biol; 2010 Feb; 30(3):552-64. PubMed ID: 19752191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
    Kagalwala MN; Glaus BJ; Dang W; Zofall M; Bartholomew B
    EMBO J; 2004 May; 23(10):2092-104. PubMed ID: 15131696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple ISWI ATPase complexes from xenopus laevis. Functional conservation of an ACF/CHRAC homolog.
    Guschin D; Geiman TM; Kikyo N; Tremethick DJ; Wolffe AP; Wade PA
    J Biol Chem; 2000 Nov; 275(45):35248-55. PubMed ID: 10942776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP-dependent nucleosome remodeling.
    Becker PB; Hörz W
    Annu Rev Biochem; 2002; 71():247-73. PubMed ID: 12045097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.