These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1453790)

  • 1. Semi-automated system for photographing wing motion in free-flying insects.
    Brackenbury JH; Dack A
    Med Biol Eng Comput; 1992 Mar; 30(2):230-4. PubMed ID: 1453790
    [No Abstract]   [Full Text] [Related]  

  • 2. Simple shutter for photographing high-speed events in biology.
    Brackenbury JH; Wang R
    Med Biol Eng Comput; 1994 Jan; 32(1):91-3. PubMed ID: 8182968
    [No Abstract]   [Full Text] [Related]  

  • 3. Origin and transformation of the in-flight wing-coupling structure in Psocodea (Insecta: Paraneoptera).
    Ogawa N; Yoshizawa K
    J Morphol; 2018 Apr; 279(4):517-530. PubMed ID: 29226378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings.
    Eberle AL; Dickerson BH; Reinhall PG; Daniel TL
    J R Soc Interface; 2015 Mar; 12(104):20141088. PubMed ID: 25631565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous monitoring of aerial density and circadian rhythms of flying insects in a semi-urban environment.
    Genoud AP; Williams GM; Thomas BP
    PLoS One; 2021; 16(11):e0260167. PubMed ID: 34793570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2979-87. PubMed ID: 12878666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea.
    Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):416-422. PubMed ID: 29932971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aerodynamics of insect flight.
    Sane SP
    J Exp Biol; 2003 Dec; 206(Pt 23):4191-208. PubMed ID: 14581590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat?
    Phan HV; Truong QT; Au TK; Park HC
    Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The added mass forces in insect flapping wings.
    Liu L; Sun M
    J Theor Biol; 2018 Jan; 437():45-50. PubMed ID: 29037847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2989-97. PubMed ID: 12878667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success.
    Combes SA; Crall JD; Mukherjee S
    Biol Lett; 2010 Jun; 6(3):426-9. PubMed ID: 20236968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound vs. light: wing-based communication in Carboniferous insects.
    Schubnel T; Legendre F; Roques P; Garrouste R; Cornette R; Perreau M; Perreau N; Desutter-Grandcolas L; Nel A
    Commun Biol; 2021 Jul; 4(1):794. PubMed ID: 34239029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality.
    Pass G
    Arthropod Struct Dev; 2018 Jul; 47(4):391-407. PubMed ID: 29859244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bugs, bellows and Beethoven--photographing insects.
    Ogrodnick J
    J Audiov Media Med; 1996 Mar; 19(1):17-21. PubMed ID: 8776927
    [No Abstract]   [Full Text] [Related]  

  • 17. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.
    Birch JM; Dickson WB; Dickinson MH
    J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect Evolution: The Origin of Wings.
    Ross A
    Curr Biol; 2017 Feb; 27(3):R113-R115. PubMed ID: 28171756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive opto-electronic system for the measurement of movements.
    Hedwig B
    J Neurosci Methods; 2000 Jul; 100(1-2):165-71. PubMed ID: 11040380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.