These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 1453806)
1. Droop: a rapidly computable descriptor of local minimum tissue temperature during conductive interstitial hyperthermia. DeFord JA; Babbs CF; Patel UH Med Biol Eng Comput; 1992 May; 30(3):333-42. PubMed ID: 1453806 [TBL] [Abstract][Full Text] [Related]
2. Design and evaluation of closed-loop feedback control of minimum temperatures in human intracranial tumours treated with interstitial hyperthermia. DeFord JA; Babbs CF; Patel UH; Fearnot NE; Marchosky JA; Moran CJ Med Biol Eng Comput; 1991 Mar; 29(2):197-206. PubMed ID: 1857126 [TBL] [Abstract][Full Text] [Related]
3. Accuracy and precision of computer-simulated tissue temperatures in individual human intracranial tumours treated with interstitial hyperthermia. DeFord JA; Babbs CF; Patel UH; Fearnot NE; Marchosky JA; Moran CJ Int J Hyperthermia; 1990; 6(4):755-69. PubMed ID: 2168460 [TBL] [Abstract][Full Text] [Related]
4. Effective estimation and computer control of minimum tumour temperature during conductive interstitial hyperthermia. DeFord JA; Babbs CF; Patel UH; Bleyer MW; Marchosky JA; Moran CJ Int J Hyperthermia; 1991; 7(3):441-53. PubMed ID: 1919140 [TBL] [Abstract][Full Text] [Related]
5. Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. Babbs CF; Fearnot NE; Marchosky JA; Moran CJ; Jones JT; Plantenga TD IEEE Trans Biomed Eng; 1990 Jul; 37(7):662-72. PubMed ID: 2394454 [TBL] [Abstract][Full Text] [Related]
6. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation. Huang HW; Shih TC; Liauh CT Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157 [TBL] [Abstract][Full Text] [Related]
7. Computer-aided design and evaluation of novel catheters for conductive interstitial hyperthermia. Patel UH; DeFord JA; Babbs CF Med Biol Eng Comput; 1991 Jan; 29(1):25-33. PubMed ID: 2016917 [TBL] [Abstract][Full Text] [Related]
8. Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia: results from simulations using finite element models of thermoseeds and catheters. Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR IEEE Trans Biomed Eng; 1994 Oct; 41(10):975-85. PubMed ID: 7959805 [TBL] [Abstract][Full Text] [Related]
9. Temperature differentials between treatment and pretreatment temperatures correlate with local control following radiotherapy and hyperthermia. Kapp DS; Brown AN; Cox W; Cox RS Int J Radiat Oncol Biol Phys; 1993 Sep; 27(2):331-44. PubMed ID: 8407408 [TBL] [Abstract][Full Text] [Related]
10. Temperature-dependent versus constant-rate blood perfusion modelling in ferromagnetic thermoseed hyperthermia: results with a model of the human prostate. Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Frye DM; Paliwal BR Int J Hyperthermia; 1994; 10(4):517-36. PubMed ID: 7963808 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of using neural networks to estimate minimum tumour temperature and perfusion values. McGee DL; Tharp HS; Roemer RB Int J Hyperthermia; 1994; 10(5):675-89. PubMed ID: 7806924 [TBL] [Abstract][Full Text] [Related]
12. A numerical study of rapid heating for high temperature radio frequency hyperthermia. Anderson G; Ye X; Henle K; Yang Z; Li G Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456 [TBL] [Abstract][Full Text] [Related]
13. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue. Shrivastava D; Roemer RB Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387 [TBL] [Abstract][Full Text] [Related]
14. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy. Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571 [TBL] [Abstract][Full Text] [Related]
15. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. Gayzik FS; Scott EP; Loulou T J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous measurements of local tissue temperature and blood perfusion rate in the canine prostate during radio frequency thermal therapy. Zhu L; Pang L; Xu LX Biomech Model Mechanobiol; 2005 Aug; 4(1):1-9. PubMed ID: 15940507 [TBL] [Abstract][Full Text] [Related]
17. Thermometry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Prionas SD; Kapp DS; Goffinet DR; Ben-Yosef R; Fessenden P; Bagshaw MA Int J Radiat Oncol Biol Phys; 1994 Jan; 28(1):151-62. PubMed ID: 8270436 [TBL] [Abstract][Full Text] [Related]
18. The use of generalized cell-survival data in a physiologically based objective function for hyperthermia treatment planning: a sensitivity study with a simple tissue model implanted with an array of ferromagnetic thermoseeds. Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR Int J Radiat Oncol Biol Phys; 1994 Nov; 30(4):929-43. PubMed ID: 7960996 [TBL] [Abstract][Full Text] [Related]
19. [The use of an early postoperative interstitial-hyperthermia combination therapy in malignant gliomas]. Stahl H; Wust P; Maier-Hauff K; Seebass M; Mischel M; Gremmler M; Golde G; Löffel J; Felix R Strahlenther Onkol; 1995 Sep; 171(9):510-24. PubMed ID: 7570300 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of heat removal during local hyperthermia. Waterman FM; Tupchong L; Matthews J; Nerlinger R Int J Radiat Oncol Biol Phys; 1989 Nov; 17(5):1049-55. PubMed ID: 2808038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]