These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Exploration of extremophiles for high temperature biotechnological processes. Elleuche S; Schäfers C; Blank S; Schröder C; Antranikian G Curr Opin Microbiol; 2015 Jun; 25():113-9. PubMed ID: 26066287 [TBL] [Abstract][Full Text] [Related]
5. Cellulases: From Bioactivity to a Variety of Industrial Applications. Ejaz U; Sohail M; Ghanemi A Biomimetics (Basel); 2021 Jul; 6(3):. PubMed ID: 34287227 [TBL] [Abstract][Full Text] [Related]
6. Microbial cellulases and their industrial applications. Kuhad RC; Gupta R; Singh A Enzyme Res; 2011; 2011():280696. PubMed ID: 21912738 [TBL] [Abstract][Full Text] [Related]
7. High Throughput Screening: Developed Techniques for Cellulolytic and Xylanolytic Activities Assay. Ayala-Mendivil N; Calixto-Romo ML; Amaya-Delgado L; Casas-Godoy L; Sandoval G Comb Chem High Throughput Screen; 2016; 19(8):627-635. PubMed ID: 27515041 [TBL] [Abstract][Full Text] [Related]
8. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Esteves AC; Saraiva M; Correia A; Alves A Can J Microbiol; 2014 May; 60(5):332-42. PubMed ID: 24802941 [TBL] [Abstract][Full Text] [Related]
11. Microbial pectinases: an ecofriendly tool of nature for industries. Garg G; Singh A; Kaur A; Singh R; Kaur J; Mahajan R 3 Biotech; 2016 Jun; 6(1):47. PubMed ID: 28330117 [TBL] [Abstract][Full Text] [Related]
12. Cellulases from psychrophilic microorganisms: a review. Kasana RC; Gulati A J Basic Microbiol; 2011 Dec; 51(6):572-9. PubMed ID: 21656807 [TBL] [Abstract][Full Text] [Related]
13. Biotechnological potential of pectinolytic complexes of fungi. Lara-Márquez A; Zavala-Páramo MG; López-Romero E; Camacho HC Biotechnol Lett; 2011 May; 33(5):859-68. PubMed ID: 21246254 [TBL] [Abstract][Full Text] [Related]
14. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. Herrera Bravo de Laguna I; Toledo Marante FJ; Mioso R J Appl Microbiol; 2015 Dec; 119(6):1455-66. PubMed ID: 26274842 [TBL] [Abstract][Full Text] [Related]
15. Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries. Toushik SH; Lee KT; Lee JS; Kim KS J Food Sci; 2017 Mar; 82(3):585-593. PubMed ID: 28152204 [TBL] [Abstract][Full Text] [Related]
16. The realm of cellulases in biorefinery development. Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293 [TBL] [Abstract][Full Text] [Related]
17. Marine Microbes as a Potential Source of Cellulolytic Enzymes. Trivedi N; Reddy CR; Lali AM Adv Food Nutr Res; 2016; 79():27-41. PubMed ID: 27770862 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in the production strategies of microbial pectinases-A review. Amin F; Bhatti HN; Bilal M Int J Biol Macromol; 2019 Feb; 122():1017-1026. PubMed ID: 30217646 [TBL] [Abstract][Full Text] [Related]
19. Developments in biotechnological research in Austria. Kubicek CP Crit Rev Biotechnol; 1996; 16(3):217-55. PubMed ID: 8856962 [TBL] [Abstract][Full Text] [Related]
20. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Singh B Crit Rev Biotechnol; 2016; 36(1):59-69. PubMed ID: 25025273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]