These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1454218)

  • 1. Delayed increase of extracellular arginine, the nitric oxide precursor, following electrical white matter stimulation in rat cerebellar slices.
    Hansel C; Batchelor A; Cuénod M; Garthwaite J; Knöpfel T; Do KQ
    Neurosci Lett; 1992 Aug; 142(2):211-4. PubMed ID: 1454218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices.
    Shibuki K; Kimura S
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):443-52. PubMed ID: 9032691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamate-induced release of the nitric oxide precursor, arginine, from glial cells.
    Grima G; Benz B; Do KQ
    Eur J Neurosci; 1997 Nov; 9(11):2248-58. PubMed ID: 9464920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum.
    Shibuki K; Okada D
    Nature; 1991 Jan; 349(6307):326-8. PubMed ID: 1702879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices.
    Sakurai M
    J Physiol; 1987 Dec; 394():463-80. PubMed ID: 2832595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional topology of the mossy fibre-granule cell--Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum.
    Coutinho V; Mutoh H; Knöpfel T
    Eur J Neurosci; 2004 Aug; 20(3):740-8. PubMed ID: 15255984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climbing fibre modification of cerebellar Purkinje cell responses to parallel fibre inputs.
    Rawson JA; Tilokskulchai K
    Brain Res; 1982 Apr; 237(2):492-7. PubMed ID: 7083009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biplanar slice preparation for studying cerebellar synaptic transmission.
    Garthwaite J; Batchelor AM
    J Neurosci Methods; 1996 Feb; 64(2):189-97. PubMed ID: 8699880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum.
    Sugihara I; Lang EJ; Llinás R
    J Physiol; 1993 Oct; 470():243-71. PubMed ID: 8308729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Train stimulation of parallel fibre to Purkinje cell inputs reveals two populations of synaptic responses with different receptor signatures.
    Devi SP; Howe JR; Auger C
    J Physiol; 2016 Jul; 594(13):3705-27. PubMed ID: 27094216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrophysiological study of the in vitro, perfused brain stem-cerebellum of adult guinea-pig.
    Llinás R; Mühlethaler M
    J Physiol; 1988 Oct; 404():215-40. PubMed ID: 3253432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro.
    Crepel F; Dhanjal SS; Garthwaite J
    J Physiol; 1981 Jul; 316():127-38. PubMed ID: 7320859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of metabotropic glutamate (ACPD) receptors at the parallel fiber-Purkinje cell synapse.
    Glaum SR; Slater NT; Rossi DJ; Miller RJ
    J Neurophysiol; 1992 Oct; 68(4):1453-62. PubMed ID: 1432092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar vascular and synaptic responses in normal mice and in transgenics with Purkinje cell dysfunction.
    Yang G; Feddersen RM; Zhang F; Clark HB; Beitz AJ; Iadecola C
    Am J Physiol; 1998 Feb; 274(2):R529-40. PubMed ID: 9486314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.
    Garthwaite J; Garthwaite G; Palmer RM; Moncada S
    Eur J Pharmacol; 1989 Oct; 172(4-5):413-6. PubMed ID: 2555211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kainate receptor linked to nitric oxide synthesis from arginine.
    Garthwaite J; Southam E; Anderton M
    J Neurochem; 1989 Dec; 53(6):1952-4. PubMed ID: 2553870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal.
    Shin JH; Linden DJ
    J Neurophysiol; 2005 Dec; 94(6):4281-9. PubMed ID: 16120658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone.
    Garwicz M; Jorntell H; Ekerot CF
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):277-93. PubMed ID: 9729638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhalational anesthetic effects on rat cerebellar nitric oxide and cyclic guanosine monophosphate production.
    Rengasamy A; Pajewski TN; Johns RA
    Anesthesiology; 1997 Mar; 86(3):689-98. PubMed ID: 9066336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro interaction between cerebellar astrocytes and granule cells: a putative role for nitric oxide.
    Kiedrowski L; Costa E; Wroblewski JT
    Neurosci Lett; 1992 Jan; 135(1):59-61. PubMed ID: 1371859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.