BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 145432)

  • 1. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.
    Hasan SM; Tsuchiya T; Rosen BP
    J Bacteriol; 1978 Jan; 133(1):108-13. PubMed ID: 145432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures.
    Hasan SM; Rosen BP
    Biochim Biophys Acta; 1977 Feb; 459(2):225-40. PubMed ID: 138439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transduction in Escherichia coli. The role of the Mg2+ATPase.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Nov; 250(21):8409-15. PubMed ID: 127791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of oxidative phosphorylation and the adenosine triphosphate-dependent transhydrogenase activity by a combination of membrane fractions from unCA- and uncB- mutant strains of Escherichia coli K12.
    Cox GB; Gibson F; McCann L
    Biochem J; 1973 Aug; 134(4):1015-21. PubMed ID: 4271644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different effects of inhibitors on two mutants of Escherichia coli K12 affected in the Fo portion of the adenosine triphosphatase complex.
    Cox GB; Crane FL; Downie JA; Radik J
    Biochim Biophys Acta; 1977 Oct; 462(1):113-20. PubMed ID: 143961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy supply for active transport in anaerobically grown Escherichia coli.
    Boonstra J; Downie JA; Konings WN
    J Bacteriol; 1978 Dec; 136(3):844-53. PubMed ID: 363696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maintenance of the energized membrane state and its relation to active transport in Escherichia coli.
    Rosen BP; Adler LW
    Biochim Biophys Acta; 1975 Apr; 387(1):23-36. PubMed ID: 123782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Simoni RD; Shandell A
    J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transduction in Escherichia coli: new mutation affecting the Fo portion of the ATP synthetase complex.
    Rosen BP; Brey RN; Hasan SM
    J Bacteriol; 1978 Jun; 134(3):1030-8. PubMed ID: 149108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase.
    Altendorf K; Harold FM; Simoni RD
    J Biol Chem; 1974 Jul; 249(14):4587-93. PubMed ID: 4276462
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxidative phosphorylation in Escherichia coli K12. An uncoupled mutant with altered membrane structure.
    Cox GB; Gibson F; McCann L
    Biochem J; 1974 Feb; 138(2):211-5. PubMed ID: 4150811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.
    Fillingame RH; Knoebel K; Wopat AE
    J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    J Bacteriol; 1973 Dec; 116(3):1124-9. PubMed ID: 4270946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic complementation between two mutant unc alleles (unc A401 and unc D409) affecting the Fl portion of the magnesium ion-stimulated adenosine triphosphatase of Escherichia coli K12.
    Cox GB; Downie JA; Gibson F; Radik J
    Biochem J; 1978 Mar; 170(3):593-8. PubMed ID: 148275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite transport in mutants of Escherichia coli K12 defective in electron transport and coupled phosphorylation.
    Rosenberg H; Cox GB; Butlin JD; Gutowski SJ
    Biochem J; 1975 Feb; 146(2):417-23. PubMed ID: 125586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and function of the proton-translocating adenosine triphosphatase of Clostridium perfringens.
    Hasan SM; Rosen BP
    J Bacteriol; 1979 Nov; 140(2):745-7. PubMed ID: 40963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the energy-linked transhydrogenase activity in membranes from a mutant strain of Escherichia coli K12 lacking magnesium ion- or calcium ion-stimulated adenosine triphosphatase.
    Cox GB; Gibson F; McCann LM; Butlin JD; Crane FL
    Biochem J; 1973 Apr; 132(4):689-95. PubMed ID: 4269101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protonmotive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli.
    Wilson DM; Alderette JF; Maloney PC; Wilson TH
    J Bacteriol; 1976 Apr; 126(1):327-37. PubMed ID: 4427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.