These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 145432)

  • 41. ATP-driven active transport in right-side-out bacterial membrane vesicles.
    Hugenholtz J; Hong JS; Kaback HR
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3446-9. PubMed ID: 6267592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut.
    Wieczorek H; Weerth S; Schindlbeck M; Klein U
    J Biol Chem; 1989 Jul; 264(19):11143-8. PubMed ID: 2472389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis.
    Houng HS; Lynn AR; Rosen BP
    J Bacteriol; 1986 Nov; 168(2):1040-4. PubMed ID: 3096955
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of the DCCD-reactive protein of the energy transducing adenosinetriphosphatase complex from Escherichia coli.
    Altendorf K; Zitzmann W
    FEBS Lett; 1975 Nov; 59(2):268-72. PubMed ID: 132364
    [No Abstract]   [Full Text] [Related]  

  • 45. A fifth gene (uncE) in the operon concerned with oxidative phosphorylation in Escherichia coli.
    Downie JA; Senior AE; Gibson F; Cox GB
    J Bacteriol; 1979 Feb; 137(2):711-8. PubMed ID: 154509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic fusions of globular proteins to the epsilon subunit of the Escherichia coli ATP synthase: Implications for in vivo rotational catalysis and epsilon subunit function.
    Cipriano DJ; Bi Y; Dunn SD
    J Biol Chem; 2002 May; 277(19):16782-90. PubMed ID: 11875079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis.
    Dean DA; Davidson AL; Nikaido H
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations in three of the putative transmembrane helices of subunit a of the Escherichia coli F1F0-ATPase disrupt ATP-driven proton translocation.
    Paule CR; Fillingame RH
    Arch Biochem Biophys; 1989 Oct; 274(1):270-84. PubMed ID: 2528329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy coupling of the -methylgalactoside transport system of Escherichia coli.
    Parnes JR; Boos W
    J Biol Chem; 1973 Jun; 248(12):4429-35. PubMed ID: 4268122
    [No Abstract]   [Full Text] [Related]  

  • 52. Mu-induced polarity in the unc operon of Escherichia coli.
    Gibson F; Downie JA; Cox GB; Radik J
    J Bacteriol; 1978 Jun; 134(3):728-36. PubMed ID: 149112
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defective energy coupling in delta-subunit mutants of Escherichia coli F1F0-ATP synthase.
    Hazard AL; Senior AE
    J Biol Chem; 1994 Jan; 269(1):427-32. PubMed ID: 8276831
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of efflux systems and the cell envelope in fluorescence changes of the lipophilic cation 2-(4-dimethylaminostyryl)-1-ethylpyridinium in Escherichia coli.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1996 Jan; 1278(2):205-12. PubMed ID: 8593278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATP synthesis and hydrolysis by a hybrid system reconstituted from the beta-subunit of Escherichia coli F1-ATPase and beta-less chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z; Khananshvili D; Weiss S; Kanazawa H; Futai M
    J Biol Chem; 1985 Oct; 260(23):12635-40. PubMed ID: 2864345
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [A unified concept of energy transduction by biochemical systems].
    Losada M
    Arch Biol Med Exp; 1986 Jan; 19(1):29-56. PubMed ID: 2835012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beta-galactoside transport and proton movements in an adenosine triphosphatase-deficient mutant of Escherichia coli.
    Rosen BP
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1289-96. PubMed ID: 4270657
    [No Abstract]   [Full Text] [Related]  

  • 58. Restoration of active calcium transport in vesicles of an Mg2+-ATPase mutant of Escherichia coli by wild-type Mg2+-ATPase.
    Tsuchiya T; Rosen BP
    Biochem Biophys Res Commun; 1975 Apr; 63(4):832-8. PubMed ID: 124173
    [No Abstract]   [Full Text] [Related]  

  • 59. The defective proton-ATPase of uncA mutants of Escherichia coli: ATP-binding and ATP-induced conformational change in mutant alpha-subunits.
    Rao R; Perlin DS; Senior AE
    Arch Biochem Biophys; 1987 Jun; 255(2):309-15. PubMed ID: 2884928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Active transport of calcium in membrane vesicles from Mycobacterium phlei.
    Kumar G; Devés R; Brodie AF
    Eur J Biochem; 1979 Oct; 100(2):365-75. PubMed ID: 159818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.