These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 145443)

  • 1. Peripheral proteins and smooth membrane from erythrocyte ghosts. Segregation of ATP-utilizing enzymes into smooth membrane.
    Hayashi H; Jarrett HW; Penniston JT
    J Cell Biol; 1978 Jan; 76(1):105-15. PubMed ID: 145443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrin extractability from erythrocyte in Duchenne muscular dystrophies and the effect of proteases on erythrocyte ghosts.
    Tsuchiya Y; Sugita H; Ishiura S; Imahori K
    Clin Chim Acta; 1981 Feb; 109(3):285-93. PubMed ID: 6452973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane phosphorylation in intact human erythrocytes.
    Reimann B; Klatt D; Tsamaloukas AG; Maretzki D
    Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocytosed vesicles.
    Birchmeier W; Lanz JH; Winterhalter KH; Conrad MJ
    J Biol Chem; 1979 Sep; 254(18):9298-304. PubMed ID: 479196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of polyphosphoinositides in the ATP turnover of intact human erythrocytes and in the ATPase activity of purified membranes.
    Maretzki D; Reimann B; Klatt D; Schwarzer E
    Biomed Biochim Acta; 1983; 42(11-12):S72-6. PubMed ID: 6326777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective phosphorylation of erythrocyte membrane proteins by the solubilized membrane protein kinases.
    Hosey MM; Tao M
    Biochemistry; 1977 Oct; 16(21):4578-83. PubMed ID: 20935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-dependent endocytosis in erythrocyte ghosts. IV. Effects of Ca2+, Na+ +K+, and 5'-adenylylimidodiphosphate.
    Hayashi H; Plishker GA; Vaughan L; Penniston JT
    Biochim Biophys Acta; 1975 Mar; 382(2):218-29. PubMed ID: 123470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between phosphorylation and adenosine triphosphate-dependent Ca2+ binding of swine and bovine erythrocyte membranes.
    Kawaguchi T; Konishi K
    Biochim Biophys Acta; 1980 Apr; 597(3):577-86. PubMed ID: 6246940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of (Ca + Mg)-ATPase activity with ATP-dependent Ca uptake in vesicles prepared from human erythrocytes.
    Quist EE; Roufogalis BD
    J Supramol Struct; 1977; 6(3):375-81. PubMed ID: 145517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the phlorizin site on Na, K-ATPase in red cell membranes.
    Nakagawa A; Nakao M
    J Biochem; 1977 May; 81(5):1511-5. PubMed ID: 142763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calmodulin-dependent spectrin kinase activity in resealed human erythrocyte ghosts.
    Nelson MJ; Daleke DL; Huestis WH
    Biochim Biophys Acta; 1982 Apr; 686(2):182-8. PubMed ID: 6805511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells.
    Palek J; Liu SC; Liu PA
    Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calmodulin-dependent spectrin kinase activity in human erythrocytes.
    Huestis WH; Nelson MJ; Ferrell JE
    Prog Clin Biol Res; 1981; 56():137-55. PubMed ID: 6120520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lipid requirement of the (Ca2+ + Mg2+)-ATPase in the human erythrocyte membrane, as studied by various highly purified phospholipases.
    Roelofsen B; Schatzmann HJ
    Biochim Biophys Acta; 1977 Jan; 464(1):17-36. PubMed ID: 137746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrin rearrangement early in erythrocyte ghost endocytosis.
    Hardy B; Bensch KG; Schrier SL
    J Cell Biol; 1979 Sep; 82(3):654-63. PubMed ID: 117012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins.
    Maretzki D; Klatt D; Reimann B; Rapoport S
    Acta Biol Med Ger; 1981; 40(4-5):479-86. PubMed ID: 6118991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium transport and adenosine triphosphatase activities of erythrocyte membranes in congenital spherocytosis.
    Johnsson R; Santaholma S; Saris NE
    Scand J Clin Lab Invest; 1978 Apr; 38(2):121-5. PubMed ID: 148726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of human erythrocyte membranes. Presence of the nucleoside transport complex in an insoluble residue.
    Pickard MA; Paterson AR
    Biochim Biophys Acta; 1976 Dec; 455(3):817-23. PubMed ID: 999942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spectrin phosphorylation reaction in human erythrocytes.
    Greenquist AC; Wyatt JL; Guatelli JC; Shohet SB
    Prog Clin Biol Res; 1978; 20():1-24. PubMed ID: 652813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.