These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 14545670)
1. Tempe fermentation: some aspects of formation of gamma-linolenic acid, proteases and vitamins. Bisping B; Hering L; Baumann U; Denter J; Keuth S; Rehm HJ Biotechnol Adv; 1993; 11(3):481-93. PubMed ID: 14545670 [TBL] [Abstract][Full Text] [Related]
2. Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation. Keuth S; Bisping B J Appl Bacteriol; 1993 Nov; 75(5):427-34. PubMed ID: 8300444 [TBL] [Abstract][Full Text] [Related]
3. Changes in the contents of fat-soluble vitamins and provitamins during tempe fermentation. Denter J; Rehm HJ; Bisping B Int J Food Microbiol; 1998 Dec; 45(2):129-34. PubMed ID: 9924943 [TBL] [Abstract][Full Text] [Related]
4. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Denter J; Bisping B Int J Food Microbiol; 1994 Apr; 22(1):23-31. PubMed ID: 8060790 [TBL] [Abstract][Full Text] [Related]
5. Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Kusumah D; Wakui M; Murakami M; Xie X; Yukihito K; Maeda I Biosci Biotechnol Biochem; 2020 Jun; 84(6):1285-1290. PubMed ID: 32089087 [TBL] [Abstract][Full Text] [Related]
6. Analysis of functional ingredients of tempe-like fermented Moringa oleifera seeds (Moringa tempe) prepared with Rhizopus species. Aoki H; Nakatsuka-Mori T; Ueno Y; Nabeshima Y; Oyama H J Biosci Bioeng; 2023 Apr; 135(4):306-312. PubMed ID: 36803861 [TBL] [Abstract][Full Text] [Related]
8. Effect of Fungal and Fungal-Bacterial Tempe-Type Fermentation on the Bioactive Potential of Grass Pea Seeds and Flaxseed Oil Cake Mix. Stodolak B; Grabacka M; Starzyńska-Janiszewska A; Duliński R Int J Food Sci; 2024; 2024():5596798. PubMed ID: 38549663 [TBL] [Abstract][Full Text] [Related]
9. Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Mo H; Kariluoto S; Piironen V; Zhu Y; Sanders MG; Vincken JP; Wolkers-Rooijackers J; Nout MJ Food Chem; 2013 Dec; 141(3):2418-25. PubMed ID: 23870976 [TBL] [Abstract][Full Text] [Related]
10. Metabolite Changes in Indonesian Prativi MBN; Astuti DI; Putri SP; Laviña WA; Fukusaki E; Aditiawati P Metabolites; 2023 Feb; 13(2):. PubMed ID: 36837919 [No Abstract] [Full Text] [Related]
11. Stodolak B; Starzyńska-Janiszewska A; Mika M; Wikiera A Molecules; 2020 Oct; 25(20):. PubMed ID: 33081302 [TBL] [Abstract][Full Text] [Related]
12. Toxicological, nutritional and microbiological evaluation of tempe fermentation with Rhizopus oligosporus of bitter and sweet apricot seeds. Tunçel G; Nout MJ; Brimer L; Göktan D Int J Food Microbiol; 1990 Dec; 11(3-4):337-44. PubMed ID: 2282289 [TBL] [Abstract][Full Text] [Related]
13. Selection of Rhizopus strains for L(+)-lactic acid and gamma-linolenic acid production. Kristofíková L; Rosenberg M; Vlnová A; Sajbidor J; Certík M Folia Microbiol (Praha); 1991; 36(5):451-5. PubMed ID: 1668279 [TBL] [Abstract][Full Text] [Related]
14. Solid-substrate fermentation of soybeans with Rhizopus spp.: comparison of discontinuous rotation with stationary bed fermentation. Han B; Kiers JL; Nout RM J Biosci Bioeng; 1999; 88(2):205-9. PubMed ID: 16232599 [TBL] [Abstract][Full Text] [Related]
15. Free fatty acids identified as antitryptic factor in soybeans fermented by Rhizopus oligosporus. Wang HL; Swain EW; Wallen LL; Hesseltine CW J Nutr; 1975 Oct; 105(10):1351-5. PubMed ID: 1171938 [TBL] [Abstract][Full Text] [Related]
16. Toxin production by bacterial endosymbionts of a Rhizopus microsporus strain used for tempe/sufu processing. Rohm B; Scherlach K; Möbius N; Partida-Martinez LP; Hertweck C Int J Food Microbiol; 2010 Jan; 136(3):368-71. PubMed ID: 19942312 [TBL] [Abstract][Full Text] [Related]
17. Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Roubos-van den Hil PJ; Nout MJ; van der Meulen J; Gruppen H Food Microbiol; 2010 Aug; 27(5):638-44. PubMed ID: 20510782 [TBL] [Abstract][Full Text] [Related]
18. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds. Starzyńska-Janiszewska A; Stodolak B; Wikiera A Acta Sci Pol Technol Aliment; 2015; 14(2):125-132. PubMed ID: 28068010 [TBL] [Abstract][Full Text] [Related]
19. Studies on the production of bambara groundnut (Vigna subterranea) tempe. Amadi EN; Uneze R; Barimalaa IS; Achinewhu SC Plant Foods Hum Nutr; 1999; 53(3):199-208. PubMed ID: 10517279 [TBL] [Abstract][Full Text] [Related]
20. Effect of environmental conditions during soya-bean fermentation on the growth of Staphylococcus aureus and production and thermal stability of enterotoxins A and B. Nout MJ; Notermans S; Rombouts FM Int J Food Microbiol; 1988 Dec; 7(4):299-309. PubMed ID: 3275328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]