BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1454806)

  • 1. Control of gal transcription through DNA looping: inhibition of the initial transcribing complex.
    Choy HE; Adhya S
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11264-8. PubMed ID: 1454806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA trajectory in the Gal repressosome.
    Semsey S; Tolstorukov MY; Virnik K; Zhurkin VB; Adhya S
    Genes Dev; 2004 Aug; 18(15):1898-907. PubMed ID: 15289461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping.
    Mota LJ; Sarmento LM; de Sá-Nogueira I
    J Bacteriol; 2001 Jul; 183(14):4190-201. PubMed ID: 11418559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and λ repressors.
    Priest DG; Cui L; Kumar S; Dunlap DD; Dodd IB; Shearwin KE
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):349-54. PubMed ID: 24344307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene repression by minimal lac loops in vivo.
    Bond LM; Peters JP; Becker NA; Kahn JD; Maher LJ
    Nucleic Acids Res; 2010 Dec; 38(22):8072-82. PubMed ID: 21149272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic HMGB proteins as replacements for HU in E. coli repression loop formation.
    Becker NA; Kahn JD; Maher LJ
    Nucleic Acids Res; 2008 Jul; 36(12):4009-21. PubMed ID: 18515834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak operator binding enhances simulated Lac repressor-mediated DNA looping.
    Colasanti AV; Grosner MA; Perez PJ; Clauvelin N; Lu XJ; Olson WK
    Biopolymers; 2013 Dec; 99(12):1070-81. PubMed ID: 23818216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.
    Hensel Z; Weng X; Lagda AC; Xiao J
    PLoS Biol; 2013; 11(6):e1001591. PubMed ID: 23853547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial gene control by DNA looping using engineered dimeric transcription activator like effector (TALE) proteins.
    Becker NA; Schwab TL; Clark KJ; Maher LJ
    Nucleic Acids Res; 2018 Mar; 46(5):2690-2696. PubMed ID: 29390154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping.
    Normanno D; Vanzi F; Pavone FS
    Nucleic Acids Res; 2008 May; 36(8):2505-13. PubMed ID: 18310101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What controls DNA looping?
    Perez PJ; Clauvelin N; Grosner MA; Colasanti AV; Olson WK
    Int J Mol Sci; 2014 Aug; 15(9):15090-108. PubMed ID: 25167135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic mining of prokaryotic repressors for orthogonal logic gates.
    Stanton BC; Nielsen AA; Tamsir A; Clancy K; Peterson T; Voigt CA
    Nat Chem Biol; 2014 Feb; 10(2):99-105. PubMed ID: 24316737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscale modeling of multi-protein-DNA assemblies: the role of the catabolic activator protein in Lac-repressor-mediated looping.
    Swigon D; Olson WK
    Int J Non Linear Mech; 2008 Dec; 43(10):1082-1093. PubMed ID: 23874000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of a Promoter Repressed by a Light-Regulated Transcription Factor in
    Camsund D; Jaramillo A; Lindblad P
    Biodes Res; 2021; 2021():9857418. PubMed ID: 37849950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems.
    Yu TC; Liu WL; Brinck MS; Davis JE; Shek J; Bower G; Einav T; Insigne KD; Phillips R; Kosuri S; Urtecho G
    Nat Commun; 2021 Jan; 12(1):325. PubMed ID: 33436562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homolog comparisons further reconcile in vitro and in vivo correlations of protein activities by revealing over-looked physiological factors.
    Tungtur S; Schwingen KM; Riepe JJ; Weeramange CJ; Swint-Kruse L
    Protein Sci; 2019 Oct; 28(10):1806-1818. PubMed ID: 31351028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional regulator GalR self-assembles to form highly regular tubular structures.
    Agerschou ED; Christiansen G; Schafer NP; Madsen DJ; Brodersen DE; Semsey S; Otzen DE
    Sci Rep; 2016 Jun; 6():27672. PubMed ID: 27279285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments.
    Fleming E; Lazinski DW; Camilli A
    Mol Microbiol; 2015 Jul; 97(2):360-80. PubMed ID: 25898857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential role of base pairs on gal promoters strength.
    Lewis DEA; Le P; Adhya S
    J Mol Biol; 2015 Feb; 427(4):792-806. PubMed ID: 25543084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.