These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 14550551)

  • 1. Development of a fluorescent nanosensor for ribose.
    Lager I; Fehr M; Frommer WB; Lalonde S
    FEBS Lett; 2003 Oct; 553(1-2):85-9. PubMed ID: 14550551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors.
    Fehr M; Lalonde S; Lager I; Wolff MW; Frommer WB
    J Biol Chem; 2003 May; 278(21):19127-33. PubMed ID: 12649277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots: Resonant energy-transfer sensor.
    Willard DM; Van Orden A
    Nat Mater; 2003 Sep; 2(9):575-6. PubMed ID: 12951597
    [No Abstract]   [Full Text] [Related]  

  • 4. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor.
    Okada S; Ota K; Ito T
    Protein Sci; 2009 Dec; 18(12):2518-27. PubMed ID: 19827096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia [corrected] coli ribose binding protein based bioreporters revisited.
    Reimer A; Yagur-Kroll S; Belkin S; Roy S; van der Meer JR
    Sci Rep; 2014 Jul; 4():5626. PubMed ID: 25005019
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zemerov SD; Roose BW; Farenhem KL; Zhao Z; Stringer MA; Goldman AR; Speicher DW; Dmochowski IJ
    Anal Chem; 2020 Oct; 92(19):12817-12824. PubMed ID: 32897053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete alanine scanning of the Escherichia coli RbsB ribose binding protein reveals residues important for chemoreceptor signaling and periplasmic abundance.
    Reimer A; Maffenbeier V; Dubey M; Sentchilo V; Tavares D; Gil MH; Beggah S; van der Meer JR
    Sci Rep; 2017 Aug; 7(1):8245. PubMed ID: 28811596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of ligand binding to a ribose biosensor using site-directed mutagenesis and fluorescence spectroscopy.
    Vercillo NC; Herald KJ; Fox JM; Der BS; Dattelbaum JD
    Protein Sci; 2007 Mar; 16(3):362-8. PubMed ID: 17242374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring intermolecular interactions of a substrate binding protein using a riboswitch-based sensor.
    Fowler CC; Sugiman-Marangos S; Junop MS; Brown ED; Li Y
    Chem Biol; 2013 Dec; 20(12):1502-12. PubMed ID: 24290881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of ligand specificity of periplasmic binding protein for glucose sensing.
    Sakaguchi-Mikami A; Taneoka A; Yamoto R; Ferri S; Sode K
    Biotechnol Lett; 2008 Aug; 30(8):1453-60. PubMed ID: 18414800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcellular Localization Defects Characterize Ribose-Binding Mutant Proteins with New Ligand Properties in Escherichia coli.
    Tavares D; van der Meer JR
    Appl Environ Microbiol; 2022 Jan; 88(2):e0211721. PubMed ID: 34757821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor.
    Soleja N; Mohsin M
    Int J Biol Macromol; 2019 Oct; 138():648-657. PubMed ID: 31330208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET imaging of diatoms expressing a biosilica-localized ribose sensor.
    Marshall KE; Robinson EW; Hengel SM; Paša-Tolić L; Roesijadi G
    PLoS One; 2012; 7(3):e33771. PubMed ID: 22470473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled nanoscale biosensors based on quantum dot FRET donors.
    Medintz IL; Clapp AR; Mattoussi H; Goldman ER; Fisher B; Mauro JM
    Nat Mater; 2003 Sep; 2(9):630-8. PubMed ID: 12942071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of Ligand-induced Protein Conformation Influences Affinity in Maltose-binding Protein.
    van den Noort M; de Boer M; Poolman B
    J Mol Biol; 2021 Jul; 433(15):167036. PubMed ID: 33957147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-selective dual modification of periplasmic binding proteins for sensing applications.
    Crochet AP; Kabir MM; Francis MB; Paavola CD
    Biosens Bioelectron; 2010 Sep; 26(1):55-61. PubMed ID: 20541393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.