These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 14550942)

  • 1. Adaptation of Borrelia burgdorferi in the tick and the mammalian host.
    Anguita J; Hedrick MN; Fikrig E
    FEMS Microbiol Rev; 2003 Oct; 27(4):493-504. PubMed ID: 14550942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by
    Grove AP; Liveris D; Iyer R; Petzke M; Rudman J; Caimano MJ; Radolf JD; Schwartz I
    mBio; 2017 Aug; 8(4):. PubMed ID: 28830947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular survival strategies of the Lyme disease spirochete Borrelia burgdorferi.
    Singh SK; Girschick HJ
    Lancet Infect Dis; 2004 Sep; 4(9):575-83. PubMed ID: 15336225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of Borrelia burgdorferi in the vector and vertebrate host.
    Pal U; Fikrig E
    Microbes Infect; 2003 Jun; 5(7):659-66. PubMed ID: 12787742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biology of infection with Borrelia burgdorferi.
    Tilly K; Rosa PA; Stewart PE
    Infect Dis Clin North Am; 2008 Jun; 22(2):217-34, v. PubMed ID: 18452798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of the Lyme disease spirochete with its tick vector.
    Caimano MJ; Drecktrah D; Kung F; Samuels DS
    Cell Microbiol; 2016 Jul; 18(7):919-27. PubMed ID: 27147446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Borrelia burgdorferi regulates expression of complement regulator-acquiring surface protein 1 during the mammal-tick infection cycle.
    von Lackum K; Miller JC; Bykowski T; Riley SP; Woodman ME; Brade V; Kraiczy P; Stevenson B; Wallich R
    Infect Immun; 2005 Nov; 73(11):7398-405. PubMed ID: 16239539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tick-host-pathogen interactions in Lyme borreliosis.
    Hovius JW; van Dam AP; Fikrig E
    Trends Parasitol; 2007 Sep; 23(9):434-8. PubMed ID: 17656156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving models of Lyme disease spirochete gene regulation.
    Stevenson B; von Lackum K; Riley SP; Cooley AE; Woodman ME; Bykowski T
    Wien Klin Wochenschr; 2006 Nov; 118(21-22):643-52. PubMed ID: 17160602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi.
    Ouyang Z; Narasimhan S; Neelakanta G; Kumar M; Pal U; Fikrig E; Norgard MV
    BMC Microbiol; 2012 Mar; 12():44. PubMed ID: 22443136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation.
    Iyer R; Caimano MJ; Luthra A; Axline D; Corona A; Iacobas DA; Radolf JD; Schwartz I
    Mol Microbiol; 2015 Feb; 95(3):509-38. PubMed ID: 25425211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector.
    Phelan JP; Kern A; Ramsey ME; Lundt ME; Sharma B; Lin T; Gao L; Norris SJ; Hyde JA; Skare JT; Hu LT
    PLoS Pathog; 2019 May; 15(5):e1007644. PubMed ID: 31086414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.
    Caimano MJ; Dunham-Ems S; Allard AM; Cassera MB; Kenedy M; Radolf JD
    Infect Immun; 2015 Aug; 83(8):3043-60. PubMed ID: 25987708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Mutagenesis in Borrelia burgdorferi.
    Lin T; Gao L
    Methods Mol Biol; 2018; 1690():201-223. PubMed ID: 29032547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA.
    Smith AA; Yang X; Fikrig E; Pal U
    Methods Mol Biol; 2018; 1690():105-114. PubMed ID: 29032540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi.
    Rego RO; Bestor A; Stefka J; Rosa PA
    PLoS One; 2014; 9(6):e101009. PubMed ID: 24979342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular adaptation of Borrelia burgdorferi in the murine host.
    Liang FT; Nelson FK; Fikrig E
    J Exp Med; 2002 Jul; 196(2):275-80. PubMed ID: 12119353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulation in Borrelia burgdorferi.
    Samuels DS
    Annu Rev Microbiol; 2011; 65():479-99. PubMed ID: 21801026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics.
    Groshong AM; Blevins JS
    Adv Appl Microbiol; 2014; 86():41-143. PubMed ID: 24377854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph.
    Zhang L; Zhang Y; Adusumilli S; Liu L; Narasimhan S; Dai J; Zhao YO; Fikrig E
    PLoS Pathog; 2011 Jun; 7(6):e1002079. PubMed ID: 21695244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.