These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 14551328)

  • 21. Tapetum determinant1 is required for cell specialization in the Arabidopsis anther.
    Yang SL; Xie LF; Mao HZ; Puah CS; Yang WC; Jiang L; Sundaresan V; Ye D
    Plant Cell; 2003 Dec; 15(12):2792-804. PubMed ID: 14615601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea.
    Lyu M; Liang Y; Yu Y; Ma Z; Song L; Yue X; Cao J
    Plant Reprod; 2015 Jun; 28(2):121-32. PubMed ID: 25967087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tapetal AHL family protein TEK determines nexine formation in the pollen wall.
    Lou Y; Xu XF; Zhu J; Gu JN; Blackmore S; Yang ZN
    Nat Commun; 2014 May; 5():3855. PubMed ID: 24804694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and functional verification of the male sterile gene BrQRT3 in Chinese cabbage.
    Chu W; Dong S; Zou J; Huang S; Feng H
    Plant Sci; 2024 Sep; 346():112154. PubMed ID: 38879178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis.
    Zhang D; Liu D; Lv X; Wang Y; Xun Z; Liu Z; Li F; Lu H
    Plant Cell; 2014 Jul; 26(7):2939-61. PubMed ID: 25035401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ECHIDNA protein impacts on male fertility in Arabidopsis by mediating trans-Golgi network secretory trafficking during anther and pollen development.
    Fan X; Yang C; Klisch D; Ferguson A; Bhaellero RP; Niu X; Wilson ZA
    Plant Physiol; 2014 Mar; 164(3):1338-49. PubMed ID: 24424320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility.
    Enns LC; Kanaoka MM; Torii KU; Comai L; Okada K; Cleland RE
    Plant Mol Biol; 2005 Jun; 58(3):333-49. PubMed ID: 16021399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana.
    Ariizumi T; Hatakeyama K; Hinata K; Inatsugi R; Nishida I; Sato S; Kato T; Tabata S; Toriyama K
    Plant J; 2004 Jul; 39(2):170-81. PubMed ID: 15225283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of de-esterified pctin/homogalacturonan by the polygalacturonase GhNSP is necessary for pollen exine formation and male fertility in cotton.
    Wu Y; Li X; Li Y; Ma H; Chi H; Ma Y; Yang J; Xie S; Zhang R; Liu L; Su X; Lv R; Khan AH; Kong J; Guo X; Lindsey K; Min L; Zhang X
    Plant Biotechnol J; 2022 Jun; 20(6):1054-1068. PubMed ID: 35114063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis.
    Wang Y; Wu H; Yang M
    Mol Plant; 2008 Jul; 1(4):667-74. PubMed ID: 19825571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters.
    Yim S; Khare D; Kang J; Hwang JU; Liang W; Martinoia E; Zhang D; Kang B; Lee Y
    Plant Cell Rep; 2016 Sep; 35(9):1863-73. PubMed ID: 27271688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Get in shape - how a polygalacturonase affects plant morphology.
    Verhage L
    Plant J; 2021 Jun; 106(6):1491-1492. PubMed ID: 34296489
    [No Abstract]   [Full Text] [Related]  

  • 33. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana.
    Xu J; Yang C; Yuan Z; Zhang D; Gondwe MY; Ding Z; Liang W; Zhang D; Wilson ZA
    Plant Cell; 2010 Jan; 22(1):91-107. PubMed ID: 20118226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BcMF26a and BcMF26b Are Duplicated Polygalacturonase Genes with Divergent Expression Patterns and Functions in Pollen Development and Pollen Tube Formation in Brassica campestris.
    Lyu M; Yu Y; Jiang J; Song L; Liang Y; Ma Z; Xiong X; Cao J
    PLoS One; 2015; 10(7):e0131173. PubMed ID: 26153985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation.
    Huang L; Ye Y; Zhang Y; Zhang A; Liu T; Cao J
    Ann Bot; 2009 Dec; 104(7):1339-51. PubMed ID: 19815569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana.
    Hulskamp M; Parekh NS; Grini P; Schneitz K; Zimmermann I; Lolle SJ; Pruitt RE
    Dev Biol; 1997 Jul; 187(1):114-24. PubMed ID: 9224679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation.
    Xu N; Gao XQ; Zhao XY; Zhu DZ; Zhou LZ; Zhang XS
    Plant Mol Biol; 2011 Oct; 77(3):251-60. PubMed ID: 21833541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis.
    Quilichini TD; Samuels AL; Douglas CJ
    Plant Cell; 2014 Nov; 26(11):4483-98. PubMed ID: 25415974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis.
    Scholz-Starke J; Büttner M; Sauer N
    Plant Physiol; 2003 Jan; 131(1):70-7. PubMed ID: 12529516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis.
    Zhu J; Chen H; Li H; Gao JF; Jiang H; Wang C; Guan YF; Yang ZN
    Plant J; 2008 Jul; 55(2):266-77. PubMed ID: 18397379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.