BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1455176)

  • 21. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain.
    Abad-Zapatero C; Rydel TJ; Erickson J
    Proteins; 1990; 8(1):62-81. PubMed ID: 2217165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica.
    Bailey D; Cooper JB
    Protein Sci; 1994 Nov; 3(11):2129-43. PubMed ID: 7703859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 24. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency.
    Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J
    Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349
    [No Abstract]   [Full Text] [Related]  

  • 25. The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases.
    Dunn BM; Hung S
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):231-40. PubMed ID: 10708860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial aspartic proteinases.
    Hill J; Phylip LH
    FEBS Lett; 1997 Jun; 409(3):357-60. PubMed ID: 9224689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 28. Enzymic and structural characterization of nepenthesin, a unique member of a novel subfamily of aspartic proteinases.
    Athauda SB; Matsumoto K; Rajapakshe S; Kuribayashi M; Kojima M; Kubomura-Yoshida N; Iwamatsu A; Shibata C; Inoue H; Takahashi K
    Biochem J; 2004 Jul; 381(Pt 1):295-306. PubMed ID: 15035659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases.
    Blundell TL; Cooper JB; Sali A; Zhu ZY
    Adv Exp Med Biol; 1991; 306():443-53. PubMed ID: 1812741
    [No Abstract]   [Full Text] [Related]  

  • 30. Comparative modelling of barley-grain aspartic proteinase: a structural rationale for observed hydrolytic specificity.
    Guruprasad K; Törmäkangas K; Kervinen J; Blundell TL
    FEBS Lett; 1994 Sep; 352(2):131-6. PubMed ID: 7925961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular aspartic proteinases from Candida yeasts.
    Fusek M; Smith E; Foundling SI
    Adv Exp Med Biol; 1995; 362():489-500. PubMed ID: 8540363
    [No Abstract]   [Full Text] [Related]  

  • 32. Substrate specificity and molecular modelling of aspartic proteinases (cyprosins) from flowers of Cynara cardunculus subsp. flavescens cv. cardoon.
    Cordeiro M; Lowther T; Dunn BM; Guruprasad K; Blundell T; Pais MS; Brodelius PE
    Adv Exp Med Biol; 1998; 436():473-9. PubMed ID: 9561255
    [No Abstract]   [Full Text] [Related]  

  • 33. Nonspecific electrostatic binding of substrates and inhibitors to porcine pepsin.
    Kuzmic P; Sun CQ; Zhao ZC; Rich DH
    Adv Exp Med Biol; 1991; 306():75-86. PubMed ID: 1812761
    [No Abstract]   [Full Text] [Related]  

  • 34. Structure and possible function of aspartic proteinases in barley and other plants.
    Kervinen J; Törmäkangas K; Runeberg-Roos P; Guruprasad K; Blundell T; Teeri TH
    Adv Exp Med Biol; 1995; 362():241-54. PubMed ID: 8540324
    [No Abstract]   [Full Text] [Related]  

  • 35. Active site specificity of plasmepsin II.
    Westling J; Cipullo P; Hung SH; Saft H; Dame JB; Dunn BM
    Protein Sci; 1999 Oct; 8(10):2001-9. PubMed ID: 10548045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases.
    Bagossi P; Kádas J; Miklóssy G; Boross P; Weber IT; Tözsér J
    J Virol Methods; 2004 Aug; 119(2):87-93. PubMed ID: 15158589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cleavage specificities of aspartic proteinases toward oxidized insulin B chain at different pH values.
    Athaudaa SB; Takahashia K
    Protein Pept Lett; 2002 Aug; 9(4):289-94. PubMed ID: 12144505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases.
    Goldblum A; Rayan A; Fliess A; Glick M
    J Chem Inf Comput Sci; 1993; 33(2):270-4. PubMed ID: 8391019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The structure and function of the aspartic proteinases.
    Davies DR
    Annu Rev Biophys Biophys Chem; 1990; 19():189-215. PubMed ID: 2194475
    [No Abstract]   [Full Text] [Related]  

  • 40. Properties of Barrier, a novel Saccharomyces cerevisiae acid protease.
    Nath R
    Biochimie; 1993; 75(6):467-72. PubMed ID: 8364097
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.