These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 14552624)

  • 21. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage.
    Chen H; Xu J; Chen PC; Fang X; Qiu J; Fu Y; Zhou C
    ACS Nano; 2011 Oct; 5(10):8383-90. PubMed ID: 21942645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective growth of silica nanowires in silicon catalysed by Pt thin film.
    Sekhar PK; Sambandam SN; Sood DK; Bhansali S
    Nanotechnology; 2006 Sep; 17(18):4606-13. PubMed ID: 21727584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bulk preparation of Si-SiOx hierarchical structures: high-density radially oriented amorphous silica nanowires on a single-crystal silicon nanocore.
    Wang H; Zhang X; Meng X; Zhou S; Wu S; Shi W; Lee S
    Angew Chem Int Ed Engl; 2005 Oct; 44(42):6934-7. PubMed ID: 16215977
    [No Abstract]   [Full Text] [Related]  

  • 24. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes.
    Sun XH; Li CP; Wong WK; Wong NB; Lee CS; Lee ST; Teo BK
    J Am Chem Soc; 2002 Dec; 124(48):14464-71. PubMed ID: 12452723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.
    Chen Y; Zhou Q; Jiang H; Su Y; Xiao H; Zhu LA; Xu L
    Nanotechnology; 2006 Feb; 17(4):1022-5. PubMed ID: 21727375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon nanowire oxidation: the influence of sidewall structure and gold distribution.
    Sivakov VA; Scholz R; Syrowatka F; Falk F; Gösele U; Christiansen SH
    Nanotechnology; 2009 Oct; 20(40):405607. PubMed ID: 19738306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-assembling silicon nanowires for device applications using the nanochannel-guided "grow-in-place" approach.
    Shan Y; Fonash SJ
    ACS Nano; 2008 Mar; 2(3):429-34. PubMed ID: 19206566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-crystal gallium nitride nanotubes.
    Goldberger J; He R; Zhang Y; Lee S; Yan H; Choi HJ; Yang P
    Nature; 2003 Apr; 422(6932):599-602. PubMed ID: 12686996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular template assisted growth of ultrathin silicon carbide nanowires with strong green light emission and excellent field-emission properties.
    Xi G; He Y; Wang C
    Chemistry; 2010 May; 16(17):5184-90. PubMed ID: 20309964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology.
    Meng G; Han F; Zhao X; Chen B; Yang D; Liu J; Xu Q; Kong M; Zhu X; Jung YJ; Yang Y; Chu Z; Ye M; Kar S; Vajtai R; Ajayan PM
    Angew Chem Int Ed Engl; 2009; 48(39):7166-70. PubMed ID: 19544342
    [No Abstract]   [Full Text] [Related]  

  • 32. A vapor-solid strategy to silica sheathed metal nanostructures and microstructures via reactions of metal chlorides with silicon.
    Wang J; Zhang H; Ge J; Li Y
    J Phys Chem B; 2006 Jan; 110(2):807-11. PubMed ID: 16471607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis, growth mechanism, and light-emission properties of twisted SiO2 nanobelts and nanosprings.
    Zhang ZY; Wu XL; Xu LL; Shen JC; Siu GG; Chu PK
    J Chem Phys; 2008 Oct; 129(16):164702. PubMed ID: 19045293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels.
    Wang F; Jin GQ; Guo XY
    J Phys Chem B; 2006 Aug; 110(30):14546-9. PubMed ID: 16869553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The structure, energetics and thermal evolution of SiGe nanotubes.
    Liu X; Cheng D; Cao D
    Nanotechnology; 2009 Aug; 20(31):315705. PubMed ID: 19597260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silicon carbide nanostructures: a tight binding approach.
    Patrick AD; Dong X; Allison TC; Blaisten-Barojas E
    J Chem Phys; 2009 Jun; 130(24):244704. PubMed ID: 19566171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride.
    Yang J; Lu S; Kan S; Zhang X; Du J
    Chem Commun (Camb); 2009 Jun; (22):3273-5. PubMed ID: 19587937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires.
    Kim JH; An HH; Kim HS; Kim YH; Yoon CS
    J Colloid Interface Sci; 2009 Sep; 337(1):289-93. PubMed ID: 19477456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterostructures of germanium nanowires and germanium-silicon oxide nanotubes and growth mechanisms.
    Huang JQ; Chiam SY; Chim WK; Wong LM; Wang SJ
    Nanotechnology; 2009 Oct; 20(42):425604. PubMed ID: 19779235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suspended heated silicon platform for rapid thermal control of surface reactions with application to carbon nanotube synthesis.
    van Laake L; Hart AJ; Slocum AH
    Rev Sci Instrum; 2007 Aug; 78(8):083901. PubMed ID: 17764329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.