These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 14552794)
61. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis. Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531 [TBL] [Abstract][Full Text] [Related]
62. Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Gargouri M; Manigand C; Maugé C; Granier T; Langlois d'Estaintot B; Cala O; Pianet I; Bathany K; Chaudière J; Gallois B Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):989-1000. PubMed ID: 19690377 [TBL] [Abstract][Full Text] [Related]
63. Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase. The role of arginine 258. Lee HJ; Lloyd MD; Clifton IJ; Harlos K; Dubus A; Baldwin JE; Frere JM; Schofield CJ J Biol Chem; 2001 May; 276(21):18290-5. PubMed ID: 11279000 [TBL] [Abstract][Full Text] [Related]
64. A common structure of substrate shared by lignostilbenedioxygenase isozymes from Sphingomonas paucimobilis TMY1009. Kamoda S; Terada T; Saburi Y Biosci Biotechnol Biochem; 2003 Jun; 67(6):1394-6. PubMed ID: 12843670 [TBL] [Abstract][Full Text] [Related]
65. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves. Carletti G; Lucini L; Busconi M; Marocco A; Bernardi J Plant Physiol Biochem; 2013 Sep; 70():123-32. PubMed ID: 23774374 [TBL] [Abstract][Full Text] [Related]
66. Structural Insights into Substrate Specificity of Feruloyl-CoA 6'-Hydroxylase from Arabidopsis thaliana. Sun X; Zhou D; Kandavelu P; Zhang H; Yuan Q; Wang BC; Rose J; Yan Y Sci Rep; 2015 May; 5():10355. PubMed ID: 25993561 [TBL] [Abstract][Full Text] [Related]
67. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Zhang H; Du C; Wang Y; Wang J; Zheng L; Wang Y Plant Physiol Biochem; 2016 Sep; 106():278-87. PubMed ID: 27219053 [TBL] [Abstract][Full Text] [Related]
68. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Schofield CJ; Zhang Z Curr Opin Struct Biol; 1999 Dec; 9(6):722-31. PubMed ID: 10607676 [TBL] [Abstract][Full Text] [Related]
69. Altering the reaction specificity of eukaryotic ornithine decarboxylase. Jackson LK; Brooks HB; Osterman AL; Goldsmith EJ; Phillips MA Biochemistry; 2000 Sep; 39(37):11247-57. PubMed ID: 10985770 [TBL] [Abstract][Full Text] [Related]
70. Expression and tissue and subcellular localization of anthocyanidin synthase (ANS) in grapevine. Wang H; Wang W; Li H; Zhang P; Zhan J; Huang W Protoplasma; 2011 Apr; 248(2):267-79. PubMed ID: 20589402 [TBL] [Abstract][Full Text] [Related]
71. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. Coffa G; Imber AN; Maguire BC; Laxmikanthan G; Schneider C; Gaffney BJ; Brash AR J Biol Chem; 2005 Nov; 280(46):38756-66. PubMed ID: 16157595 [TBL] [Abstract][Full Text] [Related]
72. Pathway from N-Alkylglycine to Alkylisonitrile Catalyzed by Iron(II) and 2-Oxoglutarate-Dependent Oxygenases. Chen TY; Chen J; Tang Y; Zhou J; Guo Y; Chang WC Angew Chem Int Ed Engl; 2020 May; 59(19):7367-7371. PubMed ID: 32074393 [TBL] [Abstract][Full Text] [Related]
73. Dihydroflavonol 4-Reductase Genes from Li Y; Liu X; Cai X; Shan X; Gao R; Yang S; Han T; Wang S; Wang L; Gao X Front Plant Sci; 2017; 8():428. PubMed ID: 28400785 [TBL] [Abstract][Full Text] [Related]
74. High-throughput mutagenesis to evaluate models of stereochemical control in ketoreductase domains from the erythromycin polyketide synthase. O'Hare HM; Baerga-Ortiz A; Popovic B; Spencer JB; Leadlay PF Chem Biol; 2006 Mar; 13(3):287-96. PubMed ID: 16638534 [TBL] [Abstract][Full Text] [Related]
75. [Stereochemistry of proton catalyzed dimerization of 3-alkyl-indoles]. Lów M Acta Pharm Hung; 1999 Jan; 69(1):20-3. PubMed ID: 10513408 [TBL] [Abstract][Full Text] [Related]
76. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases. Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288 [TBL] [Abstract][Full Text] [Related]
77. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC. Dunham NP; Mitchell AJ; Del Río Pantoja JM; Krebs C; Bollinger JM; Boal AK Biochemistry; 2018 Nov; 57(46):6479-6488. PubMed ID: 30403469 [TBL] [Abstract][Full Text] [Related]
78. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Wüst M; Croteau RB Biochemistry; 2002 Feb; 41(6):1820-7. PubMed ID: 11827526 [TBL] [Abstract][Full Text] [Related]
79. Mechanism of monoterpene cyclization: stereochemical aspects of the transformation of noncyclizable substrate analogs by recombinant (-)-limonene synthase, (+)-bornyl diphosphate synthase, and (-)-pinene synthase. Schwab W; Williams DC; Davis EM; Croteau R Arch Biochem Biophys; 2001 Aug; 392(1):123-36. PubMed ID: 11469803 [TBL] [Abstract][Full Text] [Related]
80. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Jez JM; Bowman ME; Dixon RA; Noel JP Nat Struct Biol; 2000 Sep; 7(9):786-91. PubMed ID: 10966651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]