These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 14553902)

  • 1. Learning in discrimination of frequency or modulation rate: generalization to fundamental frequency discrimination.
    Grimault N; Micheyl C; Carlyon RP; Bacon SP; Collet L
    Hear Res; 2003 Oct; 184(1-2):41-50. PubMed ID: 14553902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential F0 comparisons between resolved and unresolved harmonics: no evidence for translation noise between two pitch mechanisms.
    Micheyl C; Oxenham AJ
    J Acoust Soc Am; 2004 Nov; 116(5):3038-50. PubMed ID: 15603149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of noise on the detectability and fundamental frequency discrimination of complex tones.
    Gockel H; Moore BC; Plack CJ; Carlyon RP
    J Acoust Soc Am; 2006 Aug; 120(2):957-65. PubMed ID: 16938983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity.
    Moore BC; Peters RW
    J Acoust Soc Am; 1992 May; 91(5):2881-93. PubMed ID: 1629481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual learning of fundamental frequency discrimination: effects of fundamental frequency, harmonic number, and component phase.
    Miyazono H; Glasberg BR; Moore BC
    J Acoust Soc Am; 2010 Dec; 128(6):3649-57. PubMed ID: 21218897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominance of missing fundamental versus spectrally cued pitch: individual differences for complex tones with unresolved harmonics.
    Renken R; Wiersinga-Post JE; Tomaskovic S; Duifhuis H
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2257-63. PubMed ID: 15139636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus).
    Osmanski MS; Song X; Wang X
    J Neurosci; 2013 May; 33(21):9161-8. PubMed ID: 23699526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to perceive pitch differences.
    Demany L; Semal C
    J Acoust Soc Am; 2002 Mar; 111(3):1377-88. PubMed ID: 11931315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and F0 discrimination of harmonic complex tones in the presence of competing tones or noise.
    Micheyl C; Bernstein JG; Oxenham AJ
    J Acoust Soc Am; 2006 Sep; 120(3):1493-505. PubMed ID: 17004471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How specific is the learning in an auditory frequency discrimination task?
    Zaltz Y; Ari-Even Roth D; Kishon-Rabin L
    J Basic Clin Physiol Pharmacol; 2011 Sep; 22(3):69-73. PubMed ID: 22865365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the duration effect in pitch perception for unresolved complex tones.
    White LJ; Plack CJ
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3309-16. PubMed ID: 14714811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pitch Discrimination in Musicians and Non-Musicians: Effects of Harmonic Resolvability and Processing Effort.
    Bianchi F; Santurette S; Wendt D; Dau T
    J Assoc Res Otolaryngol; 2016 Feb; 17(1):69-79. PubMed ID: 26637239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of frequency discrimination thresholds for complex and single tones in chinchillas.
    Shofner WP
    Hear Res; 2000 Nov; 149(1-2):106-14. PubMed ID: 11033250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of within-fiber temporal coding for perceptual studies of F0 discrimination and discrimination of harmonic and inharmonic tone complexes.
    Kale S; Micheyl C; Heinz MG
    J Assoc Res Otolaryngol; 2014 Jun; 15(3):465-82. PubMed ID: 24658856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of the fundamental frequency of complex tones with fixed and shifting spectral envelopes by normally hearing and hearing-impaired subjects.
    Moore BC; Moore GA
    Hear Res; 2003 Aug; 182(1-2):153-63. PubMed ID: 12948610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of modulation rate on the detection of frequency modulation and mistuning of complex tones.
    Carlyon RP; Moore BC; Micheyl C
    J Acoust Soc Am; 2000 Jul; 108(1):304-15. PubMed ID: 10923894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does fundamental-frequency discrimination measure virtual pitch discrimination?
    Micheyl C; Divis K; Wrobleski DM; Oxenham AJ
    J Acoust Soc Am; 2010 Oct; 128(4):1930-42. PubMed ID: 20968365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thresholds for hearing mistuned partials as separate tones in harmonic complexes.
    Moore BC; Glasberg BR; Peters RW
    J Acoust Soc Am; 1986 Aug; 80(2):479-83. PubMed ID: 3745680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of harmonic rank on sequential sound segregation.
    Madsen SMK; Dau T; Moore BCJ
    Hear Res; 2018 Sep; 367():161-168. PubMed ID: 30006111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.