BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 14554199)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol.
    Becker JV; Armstrong GO; van der Merwe MJ; Lambrechts MG; Vivier MA; Pretorius IS
    FEMS Yeast Res; 2003 Oct; 4(1):79-85. PubMed ID: 14554199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased resveratrol production in wines using engineered wine strains Saccharomyces cerevisiae EC1118 and relaxed antibiotic or auxotrophic selection.
    Sun P; Liang JL; Kang LZ; Huang XY; Huang JJ; Ye ZW; Guo LQ; Lin JF
    Biotechnol Prog; 2015; 31(3):650-5. PubMed ID: 25683151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes.
    Shin SY; Han NS; Park YC; Kim MD; Seo JH
    Enzyme Microb Technol; 2011 Jan; 48(1):48-53. PubMed ID: 22112770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells.
    Zhang Y; Li SZ; Li J; Pan X; Cahoon RE; Jaworski JG; Wang X; Jez JM; Chen F; Yu O
    J Am Chem Soc; 2006 Oct; 128(40):13030-1. PubMed ID: 17017764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of resveratrol in recombinant microorganisms.
    Beekwilder J; Wolswinkel R; Jonker H; Hall R; de Vos CH; Bovy A
    Appl Environ Microbiol; 2006 Aug; 72(8):5670-2. PubMed ID: 16885328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.).
    Hüsken A; Baumert A; Milkowski C; Becker HC; Strack D; Möllers C
    Theor Appl Genet; 2005 Nov; 111(8):1553-62. PubMed ID: 16160820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine.
    González-Candelas L; Gil JV; Lamuela-Raventós RM; Ramón D
    Int J Food Microbiol; 2000 Sep; 59(3):179-83. PubMed ID: 11020039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells.
    Wang Y; Yu O
    J Biotechnol; 2012 Jan; 157(1):258-60. PubMed ID: 22100267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.
    Hammerbacher A; Ralph SG; Bohlmann J; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2011 Oct; 157(2):876-90. PubMed ID: 21865488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium.
    Sydor T; Schaffer S; Boles E
    Appl Environ Microbiol; 2010 May; 76(10):3361-3. PubMed ID: 20348297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual and combined effects of CaCl₂ and UV-C on the biosynthesis of resveratrols in grape leaves and berry skins.
    Wang L; Ma L; Xi H; Duan W; Wang J; Li S
    J Agric Food Chem; 2013 Jul; 61(29):7135-41. PubMed ID: 23855433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stilbene levels and antioxidant activity of Vranec and Merlot wines from Macedonia: effect of variety and enological practices.
    Kostadinović S; Wilkens A; Stefova M; Ivanova V; Vojnoski B; Mirhosseini H; Winterhalter P
    Food Chem; 2012 Dec; 135(4):3003-9. PubMed ID: 22980903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli.
    Watts KT; Lee PC; Schmidt-Dannert C
    BMC Biotechnol; 2006 Mar; 6():22. PubMed ID: 16551366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine.
    Lu Y; Song Y; Zhu J; Xu X; Pang B; Jin H; Jiang C; Liu Y; Shi J
    Food Chem; 2021 Jun; 347():128972. PubMed ID: 33453581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of piceid and resveratrol in Spanish wines deriving from Monastrell (Vitis vinifera L.) grape variety.
    Moreno-Labanda JF; Mallavia R; Pérez-Fons L; Lizama V; Saura D; Micol V
    J Agric Food Chem; 2004 Aug; 52(17):5396-403. PubMed ID: 15315376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wine Resveratrol: From the Ground Up.
    Bavaresco L; Lucini L; Busconi M; Flamini R; De Rosso M
    Nutrients; 2016 Apr; 8(4):222. PubMed ID: 27089363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    FEMS Microbiol Lett; 2016 Apr; 363(8):. PubMed ID: 26976851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.