BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 14554200)

  • 1. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Veen M; Stahl U; Lang C
    FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae.
    Polakowski T; Bastl R; Stahl U; Lang C
    Appl Microbiol Biotechnol; 1999 Dec; 53(1):30-5. PubMed ID: 10645622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of genes of the fatty acid biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Shin GH; Veen M; Stahl U; Lang C
    Yeast; 2012 Sep; 29(9):371-83. PubMed ID: 22926964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.
    Leber R; Zenz R; Schröttner K; Fuchsbichler S; Pühringer B; Turnowsky F
    Eur J Biochem; 2001 Feb; 268(4):914-24. PubMed ID: 11179957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review.
    Lees ND; Skaggs B; Kirsch DR; Bard M
    Lipids; 1995 Mar; 30(3):221-6. PubMed ID: 7791529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast.
    Polakowski T; Stahl U; Lang C
    Appl Microbiol Biotechnol; 1998 Jan; 49(1):66-71. PubMed ID: 9487712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae.
    Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS
    Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6.
    Mantzouridou F; Tsimidou MZ
    FEMS Yeast Res; 2010 Sep; 10(6):699-707. PubMed ID: 20550581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae.
    Donald KA; Hampton RY; Fritz IB
    Appl Environ Microbiol; 1997 Sep; 63(9):3341-4. PubMed ID: 9292983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Bard M; Downing JF
    J Gen Microbiol; 1981 Aug; 125(2):415-20. PubMed ID: 7033470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae.
    Casey WM; Keesler GA; Parks LW
    J Bacteriol; 1992 Nov; 174(22):7283-8. PubMed ID: 1429452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains.
    Han JY; Seo SH; Song JM; Lee H; Choi ES
    J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae.
    Soustre I; Dupuy PH; Silve S; Karst F; Loison G
    FEBS Lett; 2000 Mar; 470(2):102-6. PubMed ID: 10734216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.
    Paramasivan K; Mutturi S
    J Agric Food Chem; 2017 Sep; 65(37):8162-8170. PubMed ID: 28845666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.
    Lorenz RT; Parks LW
    J Bacteriol; 1987 Aug; 169(8):3707-11. PubMed ID: 3301810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.
    Leszczynska A; Burzynska B; Plochocka D; Kaminska J; Zimnicka M; Kania M; Kiliszek M; Wysocka-Kapcinska M; Danikiewicz W; Szkopinska A
    PLoS One; 2009 Dec; 4(12):e8499. PubMed ID: 20041128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast.
    Takami T; Fang Y; Zhou X; Jaiseng W; Ma Y; Kuno T
    PLoS One; 2012; 7(11):e49004. PubMed ID: 23145048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on Squalene Biosynthesis and the Standardization of Its Extraction Methodology from Saccharomyces cerevisiae.
    Paramasivan K; Rajagopal K; Mutturi S
    Appl Biochem Biotechnol; 2019 Mar; 187(3):691-707. PubMed ID: 30039474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of activity of main mevalonic acid pathway enzymes: farnesyl diphosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and squalene synthase in yeast Saccharomyces cerevisiae.
    Szkopińska A; Swiezewska E; Karst F
    Biochem Biophys Res Commun; 2000 Jan; 267(1):473-7. PubMed ID: 10623644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.