These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 14554214)

  • 1. Noninvasive fatigue fracture model of the rat ulna.
    Tami AE; Nasser P; Schaffler MB; Knothe Tate ML
    J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of bone structural properties by accumulation and coalescence of microcracks.
    Danova NA; Colopy SA; Radtke CL; Kalscheur VL; Markel MD; Vanderby R; McCabe RP; Escarcega AJ; Muir P
    Bone; 2003 Aug; 33(2):197-205. PubMed ID: 14499353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Distribution of Linear Microcracks and Diffuse Microdamage Following Daily Bouts of Fatigue Loading of Rat Ulnae.
    Liu X; Tang C; Zhang X; Cai J; Yan Z; Xie K; Yang Z; Wang J; Guo XE; Luo E; Jing D
    J Orthop Res; 2019 Oct; 37(10):2112-2121. PubMed ID: 31206769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracortical remodeling in adult rat long bones after fatigue loading.
    Bentolila V; Boyce TM; Fyhrie DP; Drumb R; Skerry TM; Schaffler MB
    Bone; 1998 Sep; 23(3):275-81. PubMed ID: 9737350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo skeletal imaging of 18F-fluoride with positron emission tomography reveals damage- and time-dependent responses to fatigue loading in the rat ulna.
    Silva MJ; Uthgenannt BA; Rutlin JR; Wohl GR; Lewis JS; Welch MJ
    Bone; 2006 Aug; 39(2):229-36. PubMed ID: 16533624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.
    Wohl GR; Towler DA; Silva MJ
    Bone; 2009 Feb; 44(2):320-30. PubMed ID: 18950737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading.
    Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P
    Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healing of non-displaced fractures produced by fatigue loading of the mouse ulna.
    Martinez MD; Schmid GJ; McKenzie JA; Ornitz DM; Silva MJ
    Bone; 2010 Jun; 46(6):1604-12. PubMed ID: 20215063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats.
    Barrett JG; Sample SJ; McCarthy J; Kalscheur VL; Muir P; Prokuski L
    J Orthop Res; 2007 Aug; 25(8):1070-7. PubMed ID: 17444501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an in vivo bone fatigue damage model using axial compression of the rabbit forelimb.
    Buettmann EG; Silva MJ
    J Biomech; 2016 Oct; 49(14):3564-3569. PubMed ID: 27596952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-mediated vasodilation increases blood flow during the early stages of stress fracture healing.
    Tomlinson RE; Shoghi KI; Silva MJ
    J Appl Physiol (1985); 2014 Feb; 116(4):416-24. PubMed ID: 24356518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.
    Matsuzaki H; Wohl GR; Novack DV; Lynch JA; Silva MJ
    Calcif Tissue Int; 2007 Jun; 80(6):391-9. PubMed ID: 17551770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.
    Uthgenannt BA; Kramer MH; Hwu JA; Wopenka B; Silva MJ
    J Bone Miner Res; 2007 Oct; 22(10):1548-56. PubMed ID: 17576168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.