BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14554229)

  • 41. Contralateral hamstring (biceps femoris) coactivation patterns and anterior cruciate ligament dysfunction.
    Osternig LR; Caster BL; James CR
    Med Sci Sports Exerc; 1995 Jun; 27(6):805-8. PubMed ID: 7658940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pattern analysis of electromyographic linear envelopes exhibited by subjects with uninjured and injured knees during free and fast speed walking.
    Shiavi R; Zhang LQ; Limbird T; Edmondstone MA
    J Orthop Res; 1992 Mar; 10(2):226-36. PubMed ID: 1740741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamic stability after ACL injury: who can hop?
    Rudolph KS; Axe MJ; Snyder-Mackler L
    Knee Surg Sports Traumatol Arthrosc; 2000; 8(5):262-9. PubMed ID: 11061293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anterior cruciate ligament rupture translates the axes of motion within the knee.
    Mannel H; Marin F; Claes L; Dürselen L
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):130-5. PubMed ID: 14967575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities.
    Yamaguchi S; Gamada K; Sasho T; Kato H; Sonoda M; Banks SA
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):71-6. PubMed ID: 18980786
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in knee motion pattern after anterior cruciate ligament injury - case report.
    Kvist J; Good L; Tagesson S
    Clin Biomech (Bristol, Avon); 2007 Jun; 22(5):551-6. PubMed ID: 17321020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Knee rotational laxity: an investigation of bilateral asymmetry for comparison with the contralateral uninjured knee.
    Hemmerich A; van der Merwe W; Batterham M; Vaughan CL
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):607-12. PubMed ID: 22342266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods.
    McLean SG; Huang X; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):926-36. PubMed ID: 18485552
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Muscular compensation and lesion of the anterior cruciate ligament: contribution of the soleus muscle during recovery from a forward fall.
    Colné P; Thoumie P
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):849-59. PubMed ID: 16774801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sagittal tibial translation during exercises in the anterior cruciate ligament-deficient knee.
    Kvist J
    Scand J Med Sci Sports; 2005 Jun; 15(3):148-58. PubMed ID: 15885035
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of core muscle activation on dynamic trunk position and knee abduction moments: implications for ACL injury.
    Jamison ST; McNally MP; Schmitt LC; Chaudhari AM
    J Biomech; 2013 Sep; 46(13):2236-41. PubMed ID: 23891313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lower extremity neuromuscular recovery following anterior cruciate ligament reconstruction; a 2-week case study.
    Nyland J; Cook C; Keen J; Caborn DN
    Electromyogr Clin Neurophysiol; 2003; 43(1):41-9. PubMed ID: 12613140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury.
    Hashemi J; Breighner R; Chandrashekar N; Hardy DM; Chaudhari AM; Shultz SJ; Slauterbeck JR; Beynnon BD
    J Biomech; 2011 Feb; 44(4):577-85. PubMed ID: 21144520
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electromyographic analysis of anterior cruciate deficient knees with and without functional bracing during lunge exercise.
    Jalali M; Farahmand F; Rezaeian T; Ramsey DK; Mousavi SM
    Prosthet Orthot Int; 2016 Apr; 40(2):270-6. PubMed ID: 25519297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical evidence supporting a differential response to acute ACL injury.
    Chmielewski TL; Rudolph KS; Fitzgerald GK; Axe MJ; Snyder-Mackler L
    Clin Biomech (Bristol, Avon); 2001 Aug; 16(7):586-91. PubMed ID: 11470300
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency.
    Boerboom AL; Hof AL; Halbertsma JP; van Raaij JJ; Schenk W; Diercks RL; van Horn JR
    Knee Surg Sports Traumatol Arthrosc; 2001 Jul; 9(4):211-6. PubMed ID: 11522076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired ability of voluntary quadriceps activation bilaterally interferes with function testing after knee injuries. A twitch interpolation study.
    Urbach D; Awiszus F
    Int J Sports Med; 2002 May; 23(4):231-6. PubMed ID: 12015621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Is joint stability only a matter of ligaments?].
    Kuster MS
    Praxis (Bern 1994); 2001 Aug; 90(31-32):1293-5. PubMed ID: 11519194
    [No Abstract]   [Full Text] [Related]  

  • 59. Appropriate interpretation and application of a clinical classification scheme to describe dynamic knee stability after ACL injury.
    Chmielewski TL; Snyder-Mackler L
    J Neurophysiol; 2007 Jul; 98(1):557. PubMed ID: 17623786
    [No Abstract]   [Full Text] [Related]  

  • 60. Passive and dynamic joint stabilization in the normal and anterior cruciate ligament-deficient knee.
    Aagaard P
    Scand J Med Sci Sports; 2005 Jun; 15(3):137-8. PubMed ID: 15885033
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.