These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1455520)

  • 1. Signal peptidases in prokaryotes and eukaryotes--a new protease family.
    Dalbey RE; Von Heijne G
    Trends Biochem Sci; 1992 Nov; 17(11):474-8. PubMed ID: 1455520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities.
    Nunnari J; Fox TD; Walter P
    Science; 1993 Dec; 262(5142):1997-2004. PubMed ID: 8266095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chemistry and enzymology of the type I signal peptidases.
    Dalbey RE; Lively MO; Bron S; van Dijl JM
    Protein Sci; 1997 Jun; 6(6):1129-38. PubMed ID: 9194173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases.
    van Dijl JM; de Jong A; Venema G; Bron S
    J Biol Chem; 1995 Feb; 270(8):3611-8. PubMed ID: 7876097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal Peptidase Enzymology and Substrate Specificity Profiling.
    Dalbey RE; Pei D; Ekici ÖD
    Methods Enzymol; 2017; 584():35-57. PubMed ID: 28065271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function.
    Maytal-Kivity V; Reis N; Hofmann K; Glickman MH
    BMC Biochem; 2002 Sep; 3():28. PubMed ID: 12370088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications.
    Mirande M
    Prog Nucleic Acid Res Mol Biol; 1991; 40():95-142. PubMed ID: 2031086
    [No Abstract]   [Full Text] [Related]  

  • 8. A conserved 3'----5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases.
    Bernad A; Blanco L; Lázaro JM; Martín G; Salas M
    Cell; 1989 Oct; 59(1):219-28. PubMed ID: 2790959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The comparative amino acid sequences, substrate specificities and gene or cDNA nucleotide sequences of some prokaryote and eukaryote amidinotransferases: implications for evolution.
    Bedekar A; Zink RM; Sherman DH; Line TV; Van Pilsum JF
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Apr; 119(4):677-90. PubMed ID: 9787760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen.
    Graciet E; Hu RG; Piatkov K; Rhee JH; Schwarz EM; Varshavsky A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3078-83. PubMed ID: 16492767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.
    Landgrebe J; Dierks T; Schmidt B; von Figura K
    Gene; 2003 Oct; 316():47-56. PubMed ID: 14563551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between inhibitors of eukaryotic and prokaryotic serine proteases.
    Konaklieva MI; Plotkin BJ
    Mini Rev Med Chem; 2004 Sep; 4(7):721-39. PubMed ID: 15379640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmodium falciparum signal peptidase is regulated by phosphorylation and required for intra-erythrocytic growth.
    Tuteja R; Pradhan A; Sharma S
    Mol Biochem Parasitol; 2008 Feb; 157(2):137-47. PubMed ID: 18054093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramembrane proteolysis of Mgm1 by the mitochondrial rhomboid protease is highly promiscuous regarding the sequence of the cleaved hydrophobic segment.
    Schäfer A; Zick M; Kief J; Steger M; Heide H; Duvezin-Caubet S; Neupert W; Reichert AS
    J Mol Biol; 2010 Aug; 401(2):182-93. PubMed ID: 20558178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases.
    Sevier CS; Kadokura H; Tam VC; Beckwith J; Fass D; Kaiser CA
    Protein Sci; 2005 Jun; 14(6):1630-42. PubMed ID: 15930008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pepstatin-insensitive carboxyl proteinases from prokaryotes. Catalytic residues and substrate specificities.
    Oda K; Takahashi S; Ito M; Dunn BM
    Adv Exp Med Biol; 1998; 436():349-53. PubMed ID: 9561241
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of active site residues of the Tsp protease.
    Keiler KC; Sauer RT
    J Biol Chem; 1995 Dec; 270(48):28864-8. PubMed ID: 7499412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal peptidases in protein biosynthesis and intracellular transport.
    Lively MO
    Curr Opin Cell Biol; 1989 Dec; 1(6):1188-93. PubMed ID: 2699805
    [No Abstract]   [Full Text] [Related]  

  • 19. TET peptidases: A family of tetrahedral complexes conserved in prokaryotes.
    Appolaire A; Colombo M; Basbous H; Gabel F; Girard E; Franzetti B
    Biochimie; 2016 Mar; 122():188-96. PubMed ID: 26546839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids.
    Urban S; Schlieper D; Freeman M
    Curr Biol; 2002 Sep; 12(17):1507-12. PubMed ID: 12225666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.