These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14555492)

  • 1. Termite gut symbiotic archaezoa are becoming living metabolic fossils.
    Li L; Fröhlich J; Pfeiffer P; König H
    Eukaryot Cell; 2003 Oct; 2(5):1091-8. PubMed ID: 14555492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symbiotic "Archaezoa" of the primitive termite Mastotermes darwiniensis still play a role in cellulase production.
    Watanabe H; Takase A; Tokuda G; Yamada A; Lo N
    Eukaryot Cell; 2006 Sep; 5(9):1571-6. PubMed ID: 16963639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.
    Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME
    Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage.
    Tokuda G; Lo N; Watanabe H; Arakawa G; Matsumoto T; Noda H
    Mol Ecol; 2004 Oct; 13(10):3219-28. PubMed ID: 15367134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes.
    Sethi A; Kovaleva ES; Slack JM; Brown S; Buchman GW; Scharf ME
    Arch Insect Biochem Physiol; 2013 Dec; 84(4):175-93. PubMed ID: 24186432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three endogenous cellulases from termite, Reticulitermes speratus KMT001.
    Ahn HH; Kim TJ
    Arch Insect Biochem Physiol; 2021 Mar; 106(3):e21766. PubMed ID: 33590531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden cellulases in termites: revision of an old hypothesis.
    Tokuda G; Watanabe H
    Biol Lett; 2007 Jun; 3(3):336-9. PubMed ID: 17374589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus.
    Inoue J; Saita K; Kudo T; Ui S; Ohkuma M
    Eukaryot Cell; 2007 Oct; 6(10):1925-32. PubMed ID: 17766465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metatranscriptomic Techniques for Identifying Cellulases in Termites and their Symbionts.
    Peterson BF; Scharf ME
    Methods Mol Biol; 2018; 1796():85-101. PubMed ID: 29856048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus.
    Ohtoko K; Ohkuma M; Moriya S; Inoue T; Usami R; Kudo T
    Extremophiles; 2000 Dec; 4(6):343-9. PubMed ID: 11139076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.
    Ni J; Tokuda G
    Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis.
    Sabree ZL; Huang CY; Arakawa G; Tokuda G; Lo N; Watanabe H; Moran NA
    Appl Environ Microbiol; 2012 Jan; 78(1):204-10. PubMed ID: 22020505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki.
    Arakawa G; Watanabe H; Yamasaki H; Maekawa H; Tokuda G
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):710-8. PubMed ID: 19270398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki.
    Nakashima K; Watanabe H; Saitoh H; Tokuda G; Azuma JI
    Insect Biochem Mol Biol; 2002 Jul; 32(7):777-84. PubMed ID: 12044494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple levels of synergistic collaboration in termite lignocellulose digestion.
    Scharf ME; Karl ZJ; Sethi A; Boucias DG
    PLoS One; 2011; 6(7):e21709. PubMed ID: 21747950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic diversity of 'Endomicrobia' and their specific affiliation with termite gut flagellates.
    Ikeda-Ohtsubo W; Desai M; Stingl U; Brune A
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3458-3465. PubMed ID: 17906144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and 'Candidatus Endomicrobium trichonymphae'.
    Ikeda-Ohtsubo W; Brune A
    Mol Ecol; 2009 Jan; 18(2):332-42. PubMed ID: 19192183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut.
    Sato T; Hongoh Y; Noda S; Hattori S; Ui S; Ohkuma M
    Environ Microbiol; 2009 Apr; 11(4):1007-15. PubMed ID: 19170725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases?
    Tokuda G; Watanabe H; Lo N
    Gene; 2007 Oct; 401(1-2):131-4. PubMed ID: 17720335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and localization of the multiple bacterial symbionts of the termite gut flagellate Joenia annectens.
    Strassert JFH; Desai MS; Radek R; Brune A
    Microbiology (Reading); 2010 Jul; 156(Pt 7):2068-2079. PubMed ID: 20378649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.