BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 14555631)

  • 1. Recognizing translation initiation sites of eukaryotic genes based on the cooperatively scanning model.
    Wang Y; Liu J; Zhao T; Ji Q
    Bioinformatics; 2003 Oct; 19(15):1972-7. PubMed ID: 14555631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm.
    Wang Y; Ou H; Guo F
    J Comput Biol; 2003; 10(5):699-708. PubMed ID: 14633394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes.
    Makita Y; de Hoon MJ; Danchin A
    BMC Bioinformatics; 2007 Feb; 8():47. PubMed ID: 17286872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets.
    Vicentini R; Menossi M
    BMC Bioinformatics; 2007 May; 8():160. PubMed ID: 17517132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning.
    Michel AM; Andreev DE; Baranov PV
    BMC Bioinformatics; 2014 Nov; 15(1):380. PubMed ID: 25413677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic gene prediction using GeneMark.hmm.
    Borodovsky M; Lomsadze A; Ivanov N; Mills R
    Curr Protoc Bioinformatics; 2003 May; Chapter 4():Unit4.6. PubMed ID: 18428701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In search of the small ones: improved prediction of short exons in vertebrates, plants, fungi and protists.
    Saeys Y; Rouzé P; Van de Peer Y
    Bioinformatics; 2007 Feb; 23(4):414-20. PubMed ID: 17204465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of alternatively spliced cassette exons based on a hybrid model.
    Zhang X; Peng Q; Li L; Li X
    Biochem Biophys Res Commun; 2016 Mar; 471(3):368-72. PubMed ID: 26869516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence alignment kernel for recognition of promoter regions.
    Gordon L; Chervonenkis AY; Gammerman AJ; Shahmuradov IA; Solovyev VV
    Bioinformatics; 2003 Oct; 19(15):1964-71. PubMed ID: 14555630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of various algorithms for recognizing short coding sequences of human genes.
    Gao F; Zhang CT
    Bioinformatics; 2004 Mar; 20(5):673-81. PubMed ID: 14764563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of the human RFC-1 gene encoding a folate transporter reveals multiple promoters and alternatively spliced transcripts with 5' end heterogeneity.
    Tolner B; Roy K; Sirotnak FM
    Gene; 1998 May; 211(2):331-41. PubMed ID: 9602167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of FirstEF to find promoters and first exons in the human genome.
    Davuluri RV
    Curr Protoc Bioinformatics; 2003 May; Chapter 4():Unit4.7. PubMed ID: 18428702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the 3'-terminal exon in human DNA.
    Tabaska JE; Davuluri RV; Zhang MQ
    Bioinformatics; 2001 Jul; 17(7):602-7. PubMed ID: 11448878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting relations between promoter sequences and their strengths from microarray data.
    Kiryu H; Oshima T; Asai K
    Bioinformatics; 2005 Apr; 21(7):1062-8. PubMed ID: 15513998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs.
    Li H; Jiang T
    J Comput Biol; 2005; 12(6):702-18. PubMed ID: 16108712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. dPattern: transcription factor binding site (TFBS) discovery in human genome using a discriminative pattern analysis.
    Bae SH; Tang H; Wu J; Xie J; Kim S
    Bioinformatics; 2007 Oct; 23(19):2619-21. PubMed ID: 17550915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene prediction with a hidden Markov model and a new intron submodel.
    Stanke M; Waack S
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii215-25. PubMed ID: 14534192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary computation method for pattern recognition of cis-acting sites.
    Howard D; Benson K
    Biosystems; 2003 Nov; 72(1-2):19-27. PubMed ID: 14642656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate identification of alternatively spliced exons using support vector machine.
    Dror G; Sorek R; Shamir R
    Bioinformatics; 2005 Apr; 21(7):897-901. PubMed ID: 15531599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.