These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 14555725)
1. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms. Linari M; Bottinelli R; Pellegrino MA; Reconditi M; Reggiani C; Lombardi V J Physiol; 2004 Jan; 554(Pt 2):335-52. PubMed ID: 14555725 [TBL] [Abstract][Full Text] [Related]
2. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit. Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051 [TBL] [Abstract][Full Text] [Related]
3. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres. Andruchov O; Andruchova O; Wang Y; Galler S J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018 [TBL] [Abstract][Full Text] [Related]
4. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat. Reggiani C; Potma EJ; Bottinelli R; Canepari M; Pellegrino MA; Stienen GJ J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):449-60. PubMed ID: 9263923 [TBL] [Abstract][Full Text] [Related]
5. Functional properties of skinned rabbit skeletal and cardiac muscle preparations containing alpha-cardiac myosin heavy chain. Andruchov O; Wang Y; Andruchova O; Galler S Pflugers Arch; 2004 Apr; 448(1):44-53. PubMed ID: 14727117 [TBL] [Abstract][Full Text] [Related]
6. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat. Andruchov O; Galler S Pflugers Arch; 2008 Mar; 455(6):1165-72. PubMed ID: 17960418 [TBL] [Abstract][Full Text] [Related]
7. Qualitatively different cross-bridge attachments in fast and slow muscle fiber types. Galler S; Andruchov O; Stephenson GM; Stephenson DG Biochem Biophys Res Commun; 2009 Jul; 385(1):44-8. PubMed ID: 19427830 [TBL] [Abstract][Full Text] [Related]
8. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740 [TBL] [Abstract][Full Text] [Related]
9. Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis. Buschman HP; van der Laarse WJ; Stienen GJ; Elzinga G J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):503-19. PubMed ID: 8910233 [TBL] [Abstract][Full Text] [Related]
10. Contractile properties and protein isoforms of single fibres from the chicken pectoralis red strip muscle. Reiser PJ; Greaser ML; Moss RL J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):553-62. PubMed ID: 8782116 [TBL] [Abstract][Full Text] [Related]
11. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres. Mutungi G; Ranatunga KW J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):253-65. PubMed ID: 9490847 [TBL] [Abstract][Full Text] [Related]
12. Human single muscle fibre function with 84 day bed-rest and resistance exercise. Trappe S; Trappe T; Gallagher P; Harber M; Alkner B; Tesch P J Physiol; 2004 Jun; 557(Pt 2):501-13. PubMed ID: 15064323 [TBL] [Abstract][Full Text] [Related]
13. Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres. Galler S; Hilber K; Pette D J Muscle Res Cell Motil; 1997 Aug; 18(4):441-8. PubMed ID: 9276337 [TBL] [Abstract][Full Text] [Related]
14. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. Malisoux L; Francaux M; Nielens H; Theisen D J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375 [TBL] [Abstract][Full Text] [Related]
15. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations. Stål P Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228 [TBL] [Abstract][Full Text] [Related]
16. Functional differences in type-I fibres from two slow skeletal muscles of rabbit. Andruchov O; Andruchova O; Wang Y; Galler S Pflugers Arch; 2003 Sep; 446(6):752-9. PubMed ID: 12898259 [TBL] [Abstract][Full Text] [Related]
17. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. McDonald KS; Wolff MR; Moss RL J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220 [TBL] [Abstract][Full Text] [Related]
18. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 2000; 21(6):565-75. PubMed ID: 11206134 [TBL] [Abstract][Full Text] [Related]
19. Human skeletal muscle: transition between fast and slow fibre types. Neunhäuserer D; Zebedin M; Obermoser M; Moser G; Tauber M; Niebauer J; Resch H; Galler S Pflugers Arch; 2011 May; 461(5):537-43. PubMed ID: 21360037 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. Roots H; Offer GW; Ranatunga KW J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]