BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 14555725)

  • 1. The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms.
    Linari M; Bottinelli R; Pellegrino MA; Reconditi M; Reggiani C; Lombardi V
    J Physiol; 2004 Jan; 554(Pt 2):335-52. PubMed ID: 14555725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.
    Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M
    J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.
    Andruchov O; Andruchova O; Wang Y; Galler S
    J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-mechanical energy transduction in relation to myosin isoform composition in skeletal muscle fibres of the rat.
    Reggiani C; Potma EJ; Bottinelli R; Canepari M; Pellegrino MA; Stienen GJ
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):449-60. PubMed ID: 9263923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional properties of skinned rabbit skeletal and cardiac muscle preparations containing alpha-cardiac myosin heavy chain.
    Andruchov O; Wang Y; Andruchova O; Galler S
    Pflugers Arch; 2004 Apr; 448(1):44-53. PubMed ID: 14727117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.
    Andruchov O; Galler S
    Pflugers Arch; 2008 Mar; 455(6):1165-72. PubMed ID: 17960418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitatively different cross-bridge attachments in fast and slow muscle fiber types.
    Galler S; Andruchov O; Stephenson GM; Stephenson DG
    Biochem Biophys Res Commun; 2009 Jul; 385(1):44-8. PubMed ID: 19427830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis.
    Buschman HP; van der Laarse WJ; Stienen GJ; Elzinga G
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):503-19. PubMed ID: 8910233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contractile properties and protein isoforms of single fibres from the chicken pectoralis red strip muscle.
    Reiser PJ; Greaser ML; Moss RL
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):553-62. PubMed ID: 8782116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.
    Mutungi G; Ranatunga KW
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):253-65. PubMed ID: 9490847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human single muscle fibre function with 84 day bed-rest and resistance exercise.
    Trappe S; Trappe T; Gallagher P; Harber M; Alkner B; Tesch P
    J Physiol; 2004 Jun; 557(Pt 2):501-13. PubMed ID: 15064323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres.
    Galler S; Hilber K; Pette D
    J Muscle Res Cell Motil; 1997 Aug; 18(4):441-8. PubMed ID: 9276337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers.
    Malisoux L; Francaux M; Nielens H; Theisen D
    J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional differences in type-I fibres from two slow skeletal muscles of rabbit.
    Andruchov O; Andruchova O; Wang Y; Galler S
    Pflugers Arch; 2003 Sep; 446(6):752-9. PubMed ID: 12898259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2000; 21(6):565-75. PubMed ID: 11206134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single muscle fibre contractile properties in young and old men and women.
    Trappe S; Gallagher P; Harber M; Carrithers J; Fluckey J; Trappe T
    J Physiol; 2003 Oct; 552(Pt 1):47-58. PubMed ID: 12837929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human skeletal muscle: transition between fast and slow fibre types.
    Neunhäuserer D; Zebedin M; Obermoser M; Moser G; Tauber M; Niebauer J; Resch H; Galler S
    Pflugers Arch; 2011 May; 461(5):537-43. PubMed ID: 21360037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.