These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 14555745)

  • 1. The aerodynamics of avian take-off from direct pressure measurements in Canada geese (Branta canadensis).
    Usherwood JR; Hedrick TL; Biewener AA
    J Exp Biol; 2003 Nov; 206(Pt 22):4051-6. PubMed ID: 14555745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and aerodynamics of avian upstrokes during slow flight.
    Crandell KE; Tobalske BW
    J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination of wingbeat and respiration in the Canada goose. I. Passive wing flapping.
    Funk GD; Milsom WK; Steeves JD
    J Appl Physiol (1985); 1992 Sep; 73(3):1014-24. PubMed ID: 1400012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Take-off mechanics in hummingbirds (Trochilidae).
    Tobalske BW; Altshuler DL; Powers DR
    J Exp Biol; 2004 Mar; 207(Pt 8):1345-52. PubMed ID: 15010485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.
    Usherwood JR; Hedrick TL; McGowan CP; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 2):355-69. PubMed ID: 15634854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing deformation improves aerodynamic performance of forward flight of bluebottle flies flying in a flight mill.
    Hsu SJ; Deng H; Wang J; Dong H; Cheng B
    J R Soc Interface; 2024 Jul; 21(216):20240076. PubMed ID: 39016178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pausing after clap reduces power required to fling wings apart at low Reynolds number.
    Kasoju VT; Santhanakrishnan A
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34034247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aerodynamic model for insect flapping wings in forward flight.
    Han JS; Chang JW; Han JH
    Bioinspir Biomim; 2017 Mar; 12(3):036004. PubMed ID: 28362636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modeling approach to energy savings of flying Canada geese using computational fluid dynamics.
    Maeng JS; Park JH; Jang SM; Han SY
    J Theor Biol; 2013 Mar; 320():76-85. PubMed ID: 23261397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamics: The cost of flight in flocks.
    Spedding G
    Nature; 2011 Jun; 474(7352):458-9. PubMed ID: 21697942
    [No Abstract]   [Full Text] [Related]  

  • 15. Small deviations in kinematics and body form dictate muscle performances in the finely tuned avian downstroke.
    Deetjen ME; Chin DD; Heers AM; Tobalske BW; Lentink D
    Elife; 2024 Feb; 12():. PubMed ID: 38408118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upstroke wing flexion and the inertial cost of bat flight.
    Riskin DK; Bergou A; Breuer KS; Swartz SM
    Proc Biol Sci; 2012 Aug; 279(1740):2945-50. PubMed ID: 22496186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Birds repurpose the role of drag and lift to take off and land.
    Chin DD; Lentink D
    Nat Commun; 2019 Nov; 10(1):5354. PubMed ID: 31767856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations.
    Bishop CM; Spivey RJ; Hawkes LA; Batbayar N; Chua B; Frappell PB; Milsom WK; Natsagdorj T; Newman SH; Scott GR; Takekawa JY; Wikelski M; Butler PJ
    Science; 2015 Jan; 347(6219):250-4. PubMed ID: 25593180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.