BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 14556236)

  • 21. Beta-Amyloid peptide25-35 depresses excitatory synaptic transmission in the rat basolateral amygdala "in vitro".
    Ashenafi S; Fuente A; Criado JM; Riolobos AS; Heredia M; Yajeya J
    Neurobiol Aging; 2005 Apr; 26(4):419-28. PubMed ID: 15653170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term depression in rat CA1-subicular synapses depends on the G-protein coupled mACh receptors.
    Li H; Zhang J; Xiong W; Xu T; Cao J; Xu L
    Neurosci Res; 2005 Jul; 52(3):287-94. PubMed ID: 15893398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus.
    Yamawaki N; Magill PJ; Woodhall GL; Hall SD; Stanford IM
    Neuroscience; 2012 Feb; 203():1-11. PubMed ID: 22209920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asynchronic transmission in the CA3-CA1 hippocampal synapses in the neurological mutant taiep rat.
    Bonansco C; Fuenzalida M; Olivares V; Molina C; Roncagliolo M
    J Neurosci Res; 2007 Jan; 85(1):223-9. PubMed ID: 17086546
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term depression in horizontal slices of the rat lateral amygdala.
    Kaschel T; Schubert M; Albrecht D
    Synapse; 2004 Sep; 53(3):141-50. PubMed ID: 15236346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carisbamate (RWJ-333369) inhibits glutamate transmission in the granule cell of the dentate gyrus.
    Lee CY; Lee ML; Shih CC; Liou HH
    Neuropharmacology; 2011 Dec; 61(8):1239-47. PubMed ID: 21824485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus.
    Lee KH; Chang SY; Roberts DW; Kim U
    J Neurosurg; 2004 Sep; 101(3):511-7. PubMed ID: 15352610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat.
    Florio T; Scarnati E; Confalone G; Minchella D; Galati S; Stanzione P; Stefani A; Mazzone P
    Eur J Neurosci; 2007 Feb; 25(4):1174-86. PubMed ID: 17331213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: effects on motor behaviour and striatal glutamate transmission.
    Gubellini P; Eusebio A; Oueslati A; Melon C; Kerkerian-Le Goff L; Salin P
    Eur J Neurosci; 2006 Sep; 24(6):1802-14. PubMed ID: 17004943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impaired developmental switch of short-term plasticity in pyramidal cells of dysplastic cortex.
    Chen HX; Xiang H; Roper SN
    Epilepsia; 2007 Jan; 48(1):141-8. PubMed ID: 17241221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of synaptic input to hypothalamic presympathetic neurons by GABA(B) receptors.
    Chen Q; Pan HL
    Neuroscience; 2006 Oct; 142(2):595-606. PubMed ID: 16887273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bidirectional synaptic plasticity in response to single or paired pulse activation of NMDA receptors.
    Huang FS; Abbas AK; Li R; Afanasenkau D; Wigström H
    Neurosci Res; 2010 Jun; 67(2):108-16. PubMed ID: 20170690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subthreshold contribution of N-methyl-d-aspartate receptors to long-term potentiation induced by low-frequency pairing in rat hippocampal CA1 pyramidal cells.
    Krasteniakov NV; Martina M; Bergeron R
    Neuroscience; 2004; 126(1):83-94. PubMed ID: 15145075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell-type specific GABA synaptic transmission and activity-dependent plasticity in rat hippocampal stratum radiatum interneurons.
    Patenaude C; Massicotte G; Lacaille JC
    Eur J Neurosci; 2005 Jul; 22(1):179-88. PubMed ID: 16029207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopaminergic modulation of short-term synaptic plasticity in fast-spiking interneurons of primate dorsolateral prefrontal cortex.
    Gonzalez-Burgos G; Kroener S; Seamans JK; Lewis DA; Barrionuevo G
    J Neurophysiol; 2005 Dec; 94(6):4168-77. PubMed ID: 16148267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain.
    Xing GG; Liu FY; Qu XX; Han JS; Wan Y
    Exp Neurol; 2007 Dec; 208(2):323-32. PubMed ID: 17936754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacological analysis of excitatory and inhibitory synaptic transmission in horizontal brainstem slices preserving three subnuclei of spinal trigeminal nucleus.
    Han SM; Ahn DK; Youn DH
    J Neurosci Methods; 2008 Jan; 167(2):221-8. PubMed ID: 17900704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.
    Chen L; Bohanick JD; Nishihara M; Seamans JK; Yang CR
    J Neurophysiol; 2007 Mar; 97(3):2448-64. PubMed ID: 17229830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional state of corticostriatal synapses determines their expression of short- and long-term plasticity.
    Akopian G; Musleh W; Smith R; Walsh JP
    Synapse; 2000 Dec; 38(3):271-80. PubMed ID: 11020230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic and somatic effects of axotomy in the intact, innervated rat sympathetic neuron.
    Sacchi O; Rossi ML; Canella R; Fesce R
    J Neurophysiol; 2006 May; 95(5):2832-44. PubMed ID: 16452258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.