BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 14556535)

  • 1. Genetic regulation of inflorescence development in chrysanthemum.
    Shchennikova AV; Shulga OA; Angenent GC; Skryabin KG
    Dokl Biol Sci; 2003; 391():368-70. PubMed ID: 14556535
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.
    Shchennikova AV; Shulga OA; Immink R; Skryabin KG; Angenent GC
    Plant Physiol; 2004 Apr; 134(4):1632-41. PubMed ID: 15064378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive expression of the sunflower and chrysanthemum genes of the AP1/FUL group changes flowering timing in transgenic tobacco plants.
    Goloveshkina EN; Shul'ga OA; Shchennikova AV; Kamionskaya AM; Skryabin KG
    Dokl Biol Sci; 2010; 434():322-4. PubMed ID: 20963654
    [No Abstract]   [Full Text] [Related]  

  • 4. MADS transcription factors cooperate: complexities of complex formation.
    Hugouvieux V; Zubieta C
    J Exp Bot; 2018 Apr; 69(8):1821-1823. PubMed ID: 29635482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplicated C-class MADS-box genes reveal distinct roles in gynostemium development in Cymbidium ensifolium (Orchidaceae).
    Wang SY; Lee PF; Lee YI; Hsiao YY; Chen YY; Pan ZJ; Liu ZJ; Tsai WC
    Plant Cell Physiol; 2011 Mar; 52(3):563-77. PubMed ID: 21278368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS.
    Linke B; Nothnagel T; Börner T
    Plant J; 2003 Apr; 34(1):27-37. PubMed ID: 12662306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers.
    Nakamura T; Fukuda T; Nakano M; Hasebe M; Kameya T; Kanno A
    Plant Mol Biol; 2005 Jun; 58(3):435-45. PubMed ID: 16021405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L.
    Park JH; Ishikawa Y; Yoshida R; Kanno A; Kameya T
    Plant Mol Biol; 2003 Apr; 51(6):867-75. PubMed ID: 12777047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein.
    Huang F; Chi Y; Gai J; Yu D
    Gene; 2009 Jun; 438(1-2):40-8. PubMed ID: 19289160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of three MADS-box genes expressed in sunflower capitulum.
    Dezar CA; Tioni MF; Gonzalez DH; Chan RL
    J Exp Bot; 2003 Jun; 54(387):1637-9. PubMed ID: 12730268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the role of MADS-box genes in monocot floral development and diversity.
    Callens C; Tucker MR; Zhang D; Wilson ZA
    J Exp Bot; 2018 Apr; 69(10):2435-2459. PubMed ID: 29718461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development.
    Tsai WC; Lee PF; Chen HI; Hsiao YY; Wei WJ; Pan ZJ; Chuang MH; Kuoh CS; Chen WH; Chen HH
    Plant Cell Physiol; 2005 Jul; 46(7):1125-39. PubMed ID: 15890679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification of functional activity of the chrysanthemum homeotic MADS-box gene CDM37.
    Shchennikova AV; Shul'ga OA; Sizeneva ES; Perkovskaya NI; Skryabin KG
    Dokl Biochem Biophys; 2011; 436():29-31. PubMed ID: 21369898
    [No Abstract]   [Full Text] [Related]  

  • 15. Function and diversification of MADS-box genes in rice.
    Yamaguchi T; Hirano HY
    ScientificWorldJournal; 2006 Jul; 6():1923-32. PubMed ID: 17205197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.
    An X; Ye M; Wang D; Wang Z; Cao G; Zheng H; Zhang Z
    Biotechnol Lett; 2011 Jun; 33(6):1239-47. PubMed ID: 21293905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single residue change in the product of the chrysanthemum gene TPL1-2 leads to a failure in its repression of flowering.
    Zhang Z; Hu Q; Cheng H; Cheng P; Liu Y; Liu W; Xing X; Chen S; Chen F; Jiang J
    Plant Sci; 2019 Aug; 285():165-174. PubMed ID: 31203881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of HoMADS 1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L.
    Xu HY; Li XG; Li QZ; Bai SN; Lu WL; Zhang XS
    Plant Mol Biol; 2004 May; 55(2):209-20. PubMed ID: 15604676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium.
    Fu J; Yang L; Dai S
    Mol Genet Genomics; 2015 Jun; 290(3):1039-54. PubMed ID: 25523304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.