BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 14556535)

  • 41. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis.
    Song IJ; Nakamura T; Fukuda T; Yokoyama J; Ito T; Ichikawa H; Horikawa Y; Kameya T; Kanno A
    Dev Genes Evol; 2006 Jun; 216(6):301-13. PubMed ID: 16463041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ectopic Expression of a
    Liu Z; Fei Y; Zhang K; Fang Z
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022949
    [No Abstract]   [Full Text] [Related]  

  • 43. Cloning, characterization and genetic engineering of FLC homolog in Thellungiella halophila.
    Fang Q; Xu Z; Song R
    Biochem Biophys Res Commun; 2006 Sep; 347(3):707-14. PubMed ID: 16844088
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system.
    Wu C; Ma Q; Yam KM; Cheung MY; Xu Y; Han T; Lam HM; Chong K
    Planta; 2006 Mar; 223(4):725-35. PubMed ID: 16208488
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Tzeng TY; Hsiao CC; Chi PJ; Yang CH
    Plant Physiol; 2003 Nov; 133(3):1091-101. PubMed ID: 14526112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutation in Torenia fournieri Lind. UFO homolog confers loss of TfLFY interaction and results in a petal to sepal transformation.
    Sasaki K; Yamaguchi H; Aida R; Shikata M; Abe T; Ohtsubo N
    Plant J; 2012 Sep; 71(6):1002-14. PubMed ID: 22577962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In situ hybridization of the MADS-box gene POTM1 during potato floral development.
    Hart JK; Hannapel DJ
    J Exp Bot; 2002 Mar; 53(368):465-71. PubMed ID: 11847245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.
    Dreni L; Jacchia S; Fornara F; Fornari M; Ouwerkerk PB; An G; Colombo L; Kater MM
    Plant J; 2007 Nov; 52(4):690-9. PubMed ID: 17877710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference.
    Xiao H; Wang Y; Liu D; Wang W; Li X; Zhao X; Xu J; Zhai W; Zhu L
    Plant Mol Biol; 2003 Jul; 52(5):957-66. PubMed ID: 14558657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conserved differential expression of paralogous DEFICIENS- and GLOBOSA-like MADS-box genes in the flowers of Orchidaceae: refining the 'orchid code'.
    Mondragón-Palomino M; Theissen G
    Plant J; 2011 Jun; 66(6):1008-19. PubMed ID: 21435045
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression profile analysis of genes involved in horizontal gravitropism bending growth in the creeping shoots of ground-cover chrysanthemum by suppression subtractive hybridization.
    Xia S; Chen Y; Jiang J; Chen S; Guan Z; Fang W; Chen F
    Mol Biol Rep; 2013 Jan; 40(1):237-46. PubMed ID: 23065216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance.
    Deng Y; Chen S; Chen F; Cheng X; Zhang F
    Plant Cell Rep; 2011 Dec; 30(12):2177-86. PubMed ID: 21792657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. When paleontology and molecular genetics meet: a genetic context for the evolution of conifer ovuliferous scales.
    Ruelens P; Geuten K
    New Phytol; 2013 Oct; 200(1):10-12. PubMed ID: 24032566
    [No Abstract]   [Full Text] [Related]  

  • 55. Diversification of the Homeotic AP3 Clade MADS-Box Genes in Asteraceae Species Chrysanthemum morifolium L. and Helianthus annuus L.
    Shchennikova AV; Shulga OA; Skryabin KG
    Dokl Biochem Biophys; 2018 Nov; 483(1):348-354. PubMed ID: 30607737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.
    Nakano Y; Higuchi Y; Sumitomo K; Hisamatsu T
    J Exp Bot; 2013 Feb; 64(4):909-20. PubMed ID: 23314814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversification of functional activity of the chrysanthemum homeotic MADS-box gene CDM37.
    Shchennikova AV; Shul'ga OA; Sizeneva ES; Perkovskaya NI; Skryabin KG
    Dokl Biochem Biophys; 2011; 436():29-31. PubMed ID: 21369898
    [No Abstract]   [Full Text] [Related]  

  • 58. Genetic regulation of inflorescence development in chrysanthemum.
    Shchennikova AV; Shulga OA; Angenent GC; Skryabin KG
    Dokl Biol Sci; 2003; 391():368-70. PubMed ID: 14556535
    [No Abstract]   [Full Text] [Related]  

  • 59. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.
    Shchennikova AV; Shulga OA; Immink R; Skryabin KG; Angenent GC
    Plant Physiol; 2004 Apr; 134(4):1632-41. PubMed ID: 15064378
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.