BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 14556652)

  • 1. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.
    Clugston SL; Yajima R; Honek JF
    Biochem J; 2004 Jan; 377(Pt 2):309-16. PubMed ID: 14556652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes.
    Sukdeo N; Clugston SL; Daub E; Honek JF
    Biochem J; 2004 Nov; 384(Pt 1):111-7. PubMed ID: 15270717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions.
    Clugston SL; Barnard JF; Kinach R; Miedema D; Ruman R; Daub E; Honek JF
    Biochemistry; 1998 Jun; 37(24):8754-63. PubMed ID: 9628737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.
    He MM; Clugston SL; Honek JF; Matthews BW
    Biochemistry; 2000 Aug; 39(30):8719-27. PubMed ID: 10913283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I.
    Su Z; Sukdeo N; Honek JF
    Biochemistry; 2008 Dec; 47(50):13232-41. PubMed ID: 19053281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications.
    Davidson G; Clugston SL; Honek JF; Maroney MJ
    Biochemistry; 2001 Apr; 40(15):4569-82. PubMed ID: 11294624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating glyoxalase I metal selectivity by deletional mutagenesis: underlying structural factors contributing to nickel activation profiles.
    Suttisansanee U; Ran Y; Mullings KY; Sukdeo N; Honek JF
    Metallomics; 2015 Apr; 7(4):605-12. PubMed ID: 25557363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum.
    Suttisansanee U; Lau K; Lagishetty S; Rao KN; Swaminathan S; Sauder JM; Burley SK; Honek JF
    J Biol Chem; 2011 Nov; 286(44):38367-38374. PubMed ID: 21914803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Episodes of horizontal gene-transfer and gene-fusion led to co-existence of different metal-ion specific glyoxalase I.
    Kaur C; Vishnoi A; Ariyadasa TU; Bhattacharya A; Singla-Pareek SL; Sopory SK
    Sci Rep; 2013 Nov; 3():3076. PubMed ID: 24220130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily.
    Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF
    J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms.
    Clugston SL; Honek JF
    J Mol Evol; 2000 May; 50(5):491-5. PubMed ID: 10824093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli.
    Ozyamak E; Black SS; Walker CA; Maclean MJ; Bartlett W; Miller S; Booth IR
    Mol Microbiol; 2010 Dec; 78(6):1577-90. PubMed ID: 21143325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme.
    O'Young J; Sukdeo N; Honek JF
    Arch Biochem Biophys; 2007 Mar; 459(1):20-6. PubMed ID: 17196158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes.
    Sukdeo N; Honek JF
    Biochim Biophys Acta; 2007 Jun; 1774(6):756-63. PubMed ID: 17513180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis of residue 157 in the active site of human glyoxalase I.
    Ridderström M; Cameron AD; Jones TA; Mannervik B
    Biochem J; 1997 Nov; 328 ( Pt 1)(Pt 1):231-5. PubMed ID: 9359858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism of glyoxalase I: a theoretical study.
    Himo F; Siegbahn PE
    J Am Chem Soc; 2001 Oct; 123(42):10280-9. PubMed ID: 11603978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli.
    Copik AJ; Swierczek SI; Lowther WT; D'souza VM; Matthews BW; Holz RC
    Biochemistry; 2003 May; 42(20):6283-92. PubMed ID: 12755633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation.
    Thornalley PJ
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1343-8. PubMed ID: 14641060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamic acid residues as metal ligands in the active site of Escherichia coli alkaline phosphatase.
    Wojciechowski CL; Kantrowitz ER
    Biochim Biophys Acta; 2003 Jun; 1649(1):68-73. PubMed ID: 12818192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt activation of Escherichia coli 5'-nucleotidase is due to zinc ion displacement at only one of two metal-ion-binding sites.
    McMillen L; Beacham IR; Burns DM
    Biochem J; 2003 Jun; 372(Pt 2):625-30. PubMed ID: 12603203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.