BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 14556911)

  • 41. Assembled F1-(alpha beta ) and Hybrid F1-alpha 3beta 3gamma -ATPases from Rhodospirillum rubrum alpha, wild type or mutant beta, and chloroplast gamma subunits. Demonstration of Mg2+versus Ca2+-induced differences in catalytic site structure and function.
    Du Z; Tucker WC; Richter ML; Gromet-Elhanan Z
    J Biol Chem; 2001 Apr; 276(15):11517-23. PubMed ID: 11278351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis.
    Shimo-Kon R; Muneyuki E; Sakai H; Adachi K; Yoshida M; Kinosita K
    Biophys J; 2010 Apr; 98(7):1227-36. PubMed ID: 20371322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The characteristics of the (alpha V371C)3(beta R337C)3 gamma double mutant subcomplex of the TF1-ATPase indicate that the catalytic site at the alpha TP-beta TP interface with bound MgADP in crystal structures of MF1 represents a catalytic site containing inhibitory MgADP.
    Bandyopadhyay S; Muneyuki E; Allison WS
    Biochemistry; 2005 Feb; 44(7):2441-8. PubMed ID: 15709756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An alternative reaction pathway of F1-ATPase suggested by rotation without 80 degrees/40 degrees substeps of a sluggish mutant at low ATP.
    Shimabukuro K; Muneyuki E; Yoshida M
    Biophys J; 2006 Feb; 90(3):1028-32. PubMed ID: 16258036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of nucleotide binding sites of the isolated H(+)-ATPase from spinach chloroplasts, CF(0)F(1).
    Creczynski-Pasa TB; Possmayer FE; Scofano HM; Gräber P
    Arch Biochem Biophys; 2000 Apr; 376(1):141-8. PubMed ID: 10729199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differentiation of catalytic sites on Escherichia coli F1ATPase by laser photoactivated labeling with [3H]-2-Azido-ATP using the mutant beta Glu381Cys:epsilonSer108Cys to identify different beta subunits by their interactions with gamma and epsilon subunits.
    Grüber G; Capaldi RA
    Biochemistry; 1996 Apr; 35(13):3875-9. PubMed ID: 8672416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The alpha3(betaMet222Ser/Tyr345Trp)3gamma subcomplex of the TF1-ATPase does not hydolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity.
    Ren H; Bandyopadhyay S; Allison WS
    Biochemistry; 2006 May; 45(19):6222-30. PubMed ID: 16681395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar.
    Sakaki N; Shimo-Kon R; Adachi K; Itoh H; Furuike S; Muneyuki E; Yoshida M; Kinosita K
    Biophys J; 2005 Mar; 88(3):2047-56. PubMed ID: 15626703
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ATP binding to noncatalytic sites of chloroplast coupling factor CF1.
    Malyan AN
    Biochemistry (Mosc); 2002 Nov; 67(11):1253-7. PubMed ID: 12495422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer.
    Divita G; Goody RS; Gautheron DC; Di Pietro A
    J Biol Chem; 1993 Jun; 268(18):13178-86. PubMed ID: 8514756
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of short conserved segments of alpha- and beta-subunits that link F(1)-ATPase catalytic and noncatalytic sites.
    Malyan AN
    Biochemistry (Mosc); 2010 Jan; 75(1):81-4. PubMed ID: 20331427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The missing link between thermodynamics and structure in F1-ATPase.
    Yang W; Gao YQ; Cui Q; Ma J; Karplus M
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):874-9. PubMed ID: 12552084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase.
    Nadanaciva S; Weber J; Senior AE
    Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ionic track in the F1-ATPase from the thermophilic Bacillus PS3.
    Bandyopadhyay S; Allison WS
    Biochemistry; 2004 Mar; 43(9):2533-40. PubMed ID: 14992590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insight into the bind-lock mechanism of the yeast mitochondrial ATP synthase inhibitory peptide.
    Corvest V; Sigalat C; Haraux F
    Biochemistry; 2007 Jul; 46(29):8680-8. PubMed ID: 17595113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing the specificity of nucleotide binding to the F1-ATPase from thermophilic Bacillus PS3 and its isolated alpha and beta subunits with 2-N3-[beta, gamma-32P]ATP.
    Jault JM; Kaibara C; Yoshida M; Garrod S; Allison WS
    Arch Biochem Biophys; 1994 Apr; 310(1):282-8. PubMed ID: 8161217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. gammaepsilon Sub-complex of thermophilic ATP synthase has the ability to bind ATP.
    Iizuka S; Kato S; Yoshida M; Kato-Yamada Y
    Biochem Biophys Res Commun; 2006 Nov; 349(4):1368-71. PubMed ID: 16982032
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of subunits required for the catalytic activity of the F1-ATPase.
    Gromet-Elhanan Z
    J Bioenerg Biomembr; 1992 Oct; 24(5):447-52. PubMed ID: 1429538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical mechanism of ATP synthase. Magnesium plays a pivotal role in formation of the transition state where ATP is synthesized from ADP and inorganic phosphate.
    Ko YH; Hong S; Pedersen PL
    J Biol Chem; 1999 Oct; 274(41):28853-6. PubMed ID: 10506126
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The participation of metals in the mechanism of the F(1)-ATPase.
    Frasch WD
    Biochim Biophys Acta; 2000 May; 1458(2-3):310-25. PubMed ID: 10838047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.