These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 14556911)

  • 61. Refolding of recombinant alpha and beta subunits of the Rhodospirillum rubrum F(0)F(1) ATP synthase into functional monomers that reconstitute an active alpha(1)beta(1)-dimer.
    Du Z; Gromet-Elhanan Z
    Eur J Biochem; 1999 Jul; 263(2):430-7. PubMed ID: 10406951
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ATP hydrolysis-driven H(+) translocation is stimulated by sulfate, a strong inhibitor of mitochondrial ATP synthesis.
    Lodeyro AF; Castelli MV; Roveri OA
    J Bioenerg Biomembr; 2008 Aug; 40(4):269-79. PubMed ID: 18846414
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interaction of pyrophosphate with catalytic and noncatalytic sites of chloroplast ATP synthase.
    Pronin AS; Malyan AN
    Biochemistry (Mosc); 2009 Jul; 74(7):775-80. PubMed ID: 19747098
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Complex ATP-activation kinetics of plant H+-transporting ATPase may or may not require two substrate sites.
    Roberts G; Beaugé L
    Eur J Biochem; 1997 May; 246(1):228-32. PubMed ID: 9210488
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The TF1-ATPase and ATPase activities of assembled alpha 3 beta 3 gamma, alpha 3 beta 3 gamma delta, and alpha 3 beta 3 gamma epsilon complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the alpha 3 beta 3, and alpha 3 beta 3 delta complexes.
    Paik SR; Yokoyama K; Yoshida M; Ohta T; Kagawa Y; Allison WS
    J Bioenerg Biomembr; 1993 Dec; 25(6):679-84. PubMed ID: 8144495
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional and stoichiometric analysis of subunit e in bovine heart mitochondrial F(0)F(1)ATP synthase.
    Bisetto E; Picotti P; Giorgio V; Alverdi V; Mavelli I; Lippe G
    J Bioenerg Biomembr; 2008 Aug; 40(4):257-67. PubMed ID: 18958608
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Unisite and multisite catalysis in the ArsA ATPase.
    Zhou T; Shen J; Liu Y; Rosen BP
    J Biol Chem; 2002 Jun; 277(26):23815-20. PubMed ID: 11964412
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interaction of oxyanions with thioredoxin-activated chloroplast coupling factor 1.
    Malyan AN
    Biochim Biophys Acta; 2003 Dec; 1607(2-3):161-6. PubMed ID: 14670606
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Isolation and Antigenic Characterization of Corn Mitochondrial F(1)-ATPase.
    Spitsberg VL; Pfeiffer NE; Partridge B; Wylie DE; Schuster SM
    Plant Physiol; 1985 Feb; 77(2):339-45. PubMed ID: 16664055
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Alloying effect on K beta -to-K alpha intensity ratios in TixNi1-x and CrxNi1-x alloys studied by gamma -ray fluorescence and fast proton ionization.
    Bhuinya CR; Padhi HC
    Phys Rev A; 1993 Jun; 47(6):4885-4890. PubMed ID: 9909520
    [No Abstract]   [Full Text] [Related]  

  • 71. Mechanism of the αβ conformational change in F1-ATPase after ATP hydrolysis: free-energy simulations.
    Ito Y; Ikeguchi M
    Biophys J; 2015 Jan; 108(1):85-97. PubMed ID: 25564855
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites.
    Ishikawa T; Kato-Yamada Y
    PLoS One; 2014; 9(9):e107197. PubMed ID: 25244289
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thermodynamic analyses of nucleotide binding to an isolated monomeric β subunit and the α3β3γ subcomplex of F1-ATPase.
    Kikuchi Y; Naka Y; Osakabe H; Okamoto T; Masaike T; Ueno H; Toyabe S; Muneyuki E
    Biophys J; 2013 Dec; 105(11):2541-8. PubMed ID: 24314084
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Phosphate release in F1-ATPase catalytic cycle follows ADP release.
    Watanabe R; Iino R; Noji H
    Nat Chem Biol; 2010 Nov; 6(11):814-20. PubMed ID: 20871600
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis.
    Shimo-Kon R; Muneyuki E; Sakai H; Adachi K; Yoshida M; Kinosita K
    Biophys J; 2010 Apr; 98(7):1227-36. PubMed ID: 20371322
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The role of the betaDELSEED-loop of ATP synthase.
    Mnatsakanyan N; Krishnakumar AM; Suzuki T; Weber J
    J Biol Chem; 2009 Apr; 284(17):11336-45. PubMed ID: 19246448
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Studies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching.
    Bulygin VV; Milgrom YM
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4327-31. PubMed ID: 17360523
    [TBL] [Abstract][Full Text] [Related]  

  • 78. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar.
    Sakaki N; Shimo-Kon R; Adachi K; Itoh H; Furuike S; Muneyuki E; Yoshida M; Kinosita K
    Biophys J; 2005 Mar; 88(3):2047-56. PubMed ID: 15626703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotation.
    Shimabukuro K; Yasuda R; Muneyuki E; Hara KY; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14731-6. PubMed ID: 14657340
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Origin of apparent negative cooperativity of F(1)-ATPase.
    Ono S; Hara KY; Hirao J; Matsui T; Noji H; Yoshida M; Muneyuki E
    Biochim Biophys Acta; 2003 Oct; 1607(1):35-44. PubMed ID: 14556911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.