These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 14556912)

  • 1. Spectroscopic characterization of a semi-stable, charge-separated state in Cu(2+)-substituted reaction centers from Rhodobacter sphaeroides.
    Andréasson U; Carlsson T; Andréasson LE
    Biochim Biophys Acta; 2003 Oct; 1607(1):45-52. PubMed ID: 14556912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.
    Utschig LM; Poluektov O; Schlesselman SL; Thurnauer MC; Tiede DM
    Biochemistry; 2001 May; 40(20):6132-41. PubMed ID: 11352751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the charge separated state P865(+)Q(A)- in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced Q(A)- reorientation.
    Heinen U; Utschig LM; Poluektov OG; Link G; Ohmes E; Kothe G
    J Am Chem Soc; 2007 Dec; 129(51):15935-46. PubMed ID: 18052250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR).
    Utschig LM; Thurnauer MC; Tiede DM; Poluektov OG
    Biochemistry; 2005 Nov; 44(43):14131-42. PubMed ID: 16245929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. B-branch electron transfer in the photosynthetic reaction center of a Rhodobacter sphaeroides quadruple mutant. Q- and W-band electron paramagnetic resonance studies of triplet and radical-pair cofactor states.
    Marchanka A; Savitsky A; Lubitz W; Möbius K; van Gastel M
    J Phys Chem B; 2010 Nov; 114(45):14364-72. PubMed ID: 20345158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR investigation of Cu2+-substituted photosynthetic bacterial reaction centers: evidence for histidine ligation at the surface metal site.
    Utschig LM; Poluektov O; Tiede DM; Thurnauer MC
    Biochemistry; 2000 Mar; 39(11):2961-9. PubMed ID: 10715116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron-nuclear and electron-electron double resonance spectroscopies show that the primary quinone acceptor QA in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides remains in the same orientation upon light-induced reduction.
    Flores M; Savitsky A; Paddock ML; Abresch EC; Dubinskii AA; Okamura MY; Lubitz W; Möbius K
    J Phys Chem B; 2010 Dec; 114(50):16894-901. PubMed ID: 21090818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Calvo R; Passeggi MC; Isaacson RA; Okamura MY; Feher G
    Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric binding of the primary acceptor quinone in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides R26, probed with Q-band (35 GHz) EPR spectroscopy.
    van den Brink JS; Spoyalov AP; Gast P; van Liemt WB; Raap J; Lugtenburg J; Hoff AJ
    FEBS Lett; 1994 Oct; 353(3):273-6. PubMed ID: 7957873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [On the mechanism for stabilizing a long-living charge separated state of photosynthetic reaction centers frozen under intensive illumination].
    Krasil'nikov PM; Knox PP; Rubin AB
    Biofizika; 2013; 58(4):652-62. PubMed ID: 24455885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroides.
    van Mourik F; Reus M; Holzwarth AR
    Biochim Biophys Acta; 2001 Apr; 1504(2-3):311-8. PubMed ID: 11245794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a semi-stable, charge-separated state in reaction centers from Rhodobacter sphaeroides.
    Andréasson U; Andréasson LE
    Photosynth Res; 2003; 75(3):223-33. PubMed ID: 16228603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENDOR spectroscopy reveals light induced movement of the H-bond from Ser-L223 upon forming the semiquinone (Q(B)(-)(*)) in reaction centers from Rhodobacter sphaeroides.
    Paddock ML; Flores M; Isaacson R; Chang C; Abresch EC; Okamura MY
    Biochemistry; 2007 Jul; 46(28):8234-43. PubMed ID: 17590017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved and steady-state spectroscopic analysis of membrane-bound reaction centers from Rhodobacter sphaeroides: comparisons with detergent-solubilized complexes.
    Beekman LM; Visschers RW; Monshouwer R; Heer-Dawson M; Mattioli TA; McGlynn P; Hunter CN; Robert B; van Stokkum IH; van Grondelle R
    Biochemistry; 1995 Nov; 34(45):14712-21. PubMed ID: 7578079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of charge separated state P+OA- and triplet state 3P at low temperature in Rhodobacter sphaeroides (R-26) reaction centers in which bacteriopheophytin a is replaced by plant pheophytin a.
    Shkuropatov Aya ; Proskuryakov II; Shkuropatova VA; Zvereva MG; Shuvalov VA
    FEBS Lett; 1994 Sep; 351(2):249-52. PubMed ID: 8082774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.
    Brzezinski P; Andréasson LE
    Biochemistry; 1995 Jun; 34(22):7498-506. PubMed ID: 7779794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of iron-removal procedures on sequential electron transfer in photosynthetic bacterial reaction centers studied by transient EPR spectroscopy.
    Utschig LM; Greenfield SR; Tang J; Laible PD; Thurnauer MC
    Biochemistry; 1997 Jul; 36(28):8548-58. PubMed ID: 9214300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced conformational changes in photosynthetic reaction centers: dielectric relaxation in the vicinity of the dimer.
    Deshmukh SS; Williams JC; Allen JP; Kálmán L
    Biochemistry; 2011 Jan; 50(3):340-8. PubMed ID: 21141811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers.
    Orzechowska A; Lipińska M; Fiedor J; Chumakov A; Zajac M; Slezak T; Matlak K; Strzałka K; Korecki J; Fiedor L; Burda K
    Biochim Biophys Acta; 2010 Oct; 1797(10):1696-704. PubMed ID: 20603098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport dynamics at the quinone acceptor site of bacterial photosynthetic reaction centers as probed using fast temperature changes.
    Chamorovsky SK; Knox PP; Chizhov IV; Zubov BV
    Eur Biophys J; 2003 Sep; 32(6):537-43. PubMed ID: 12679860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.