These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 14557260)
1. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities. Zambonelli C; Casali M; Roberts MF J Biol Chem; 2003 Dec; 278(52):52282-9. PubMed ID: 14557260 [TBL] [Abstract][Full Text] [Related]
2. An iron-dependent bacterial phospholipase D reminiscent of purple acid phosphatases. Zambonelli C; Roberts MF J Biol Chem; 2003 Apr; 278(16):13706-11. PubMed ID: 12519726 [TBL] [Abstract][Full Text] [Related]
3. Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: covalent versus noncovalent catalysis. Yang H; Roberts MF Protein Sci; 2003 Sep; 12(9):2087-98. PubMed ID: 12931007 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. Rodriguez F; Lillington J; Johnson S; Timmel CR; Lea SM; Berks BC J Biol Chem; 2014 Nov; 289(45):30889-99. PubMed ID: 25217636 [TBL] [Abstract][Full Text] [Related]
5. Cloning, overexpression, and characterization of a bacterial Ca2+-dependent phospholipase D. Yang H; Roberts MF Protein Sci; 2002 Dec; 11(12):2958-68. PubMed ID: 12441393 [TBL] [Abstract][Full Text] [Related]
6. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
7. Expression and characterization of a heterodimer of Streptomyces chromofuscus phospholipase D. Yang H; Roberts MF Biochim Biophys Acta; 2004 Dec; 1703(1):43-51. PubMed ID: 15588701 [TBL] [Abstract][Full Text] [Related]
8. Recognition of phospholipids in Streptomyces phospholipase D. Uesugi Y; Mori K; Arima J; Iwabuchi M; Hatanaka T J Biol Chem; 2005 Jul; 280(28):26143-51. PubMed ID: 15899903 [TBL] [Abstract][Full Text] [Related]
9. Tryptophan and aspartic acid residues present in the glycerophosphoryl diester phosphodiesterase (GDPD) domain of the Loxosceles laeta phospholipase D are essential for substrate recognition. Catalán A; Cortés W; Muñoz C; Araya JE Toxicon; 2014 Apr; 81():43-7. PubMed ID: 24472346 [TBL] [Abstract][Full Text] [Related]
10. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities. Yakunin AF; Proudfoot M; Kuznetsova E; Savchenko A; Brown G; Arrowsmith CH; Edwards AM J Biol Chem; 2004 Aug; 279(35):36819-27. PubMed ID: 15210699 [TBL] [Abstract][Full Text] [Related]
11. Histidine-607 and histidine-643 provide important interactions for metal support of catalysis in phosphodiesterase-5. Francis SH; Turko IV; Grimes KA; Corbin JD Biochemistry; 2000 Aug; 39(31):9591-6. PubMed ID: 10924156 [TBL] [Abstract][Full Text] [Related]
13. Role of lysophosphatidic acid in the regulation of uterine leiomyoma cell proliferation by phospholipase D and autotaxin. Billon-Denis E; Tanfin Z; Robin P J Lipid Res; 2008 Feb; 49(2):295-307. PubMed ID: 18024704 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Streptomyces chromofuscus phospholipase D activity by dichloro-(2,2':6',2''-terpyridine)-platinum (II) dihydrate. Kubota-Akizawa M; Negishi T; Mori K; Hatanaka T J Enzyme Inhib Med Chem; 2002 Oct; 17(5):329-32. PubMed ID: 12683749 [TBL] [Abstract][Full Text] [Related]
15. Acyl carrier protein phosphodiesterase (AcpH) of Escherichia coli is a non-canonical member of the HD phosphatase/phosphodiesterase family. Thomas J; Rigden DJ; Cronan JE Biochemistry; 2007 Jan; 46(1):129-36. PubMed ID: 17198382 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. Klabunde T; Sträter N; Fröhlich R; Witzel H; Krebs B J Mol Biol; 1996 Jun; 259(4):737-48. PubMed ID: 8683579 [TBL] [Abstract][Full Text] [Related]
17. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Kumagai Y; Kawakami K; Mukaihara T; Kimura M; Hatanaka T Biochimie; 2012 Dec; 94(12):2783-90. PubMed ID: 23009928 [TBL] [Abstract][Full Text] [Related]
18. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase. The His-3 variant of the 2-His-1-carboxylate model. Khaleeli N; Busby RW; Townsend CA Biochemistry; 2000 Jul; 39(29):8666-73. PubMed ID: 10913275 [TBL] [Abstract][Full Text] [Related]
20. C-terminal loop of Streptomyces phospholipase D has multiple functional roles. Uesugi Y; Arima J; Iwabuchi M; Hatanaka T Protein Sci; 2007 Feb; 16(2):197-207. PubMed ID: 17189478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]