These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1017 related articles for article (PubMed ID: 14557868)
21. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Austin AT; Yahdjian L; Stark JM; Belnap J; Porporato A; Norton U; Ravetta DA; Schaeffer SM Oecologia; 2004 Oct; 141(2):221-35. PubMed ID: 14986096 [TBL] [Abstract][Full Text] [Related]
22. Sensitivity of mesquite shrubland CO2 exchange to precipitation in contrasting landscape settings. Potts DL; Scott RL; Cable JM; Huxman TE; Williams DG Ecology; 2008 Oct; 89(10):2900-10. PubMed ID: 18959327 [TBL] [Abstract][Full Text] [Related]
23. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. Du L; Luo Y; Zhang J; Shen Y; Zhang J; Tian R; Shao W; Xu Z Sci Total Environ; 2024 Jun; 927():172276. PubMed ID: 38583634 [TBL] [Abstract][Full Text] [Related]
24. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Heisler-White JL; Knapp AK; Kelly EF Oecologia; 2008 Nov; 158(1):129-40. PubMed ID: 18670792 [TBL] [Abstract][Full Text] [Related]
25. Response of aboveground carbon balance to long-term, experimental enhancements in precipitation seasonality is contingent on plant community type in cold-desert rangelands. McAbee K; Reinhardt K; Germino MJ; Bosworth A Oecologia; 2017 Mar; 183(3):861-874. PubMed ID: 28105522 [TBL] [Abstract][Full Text] [Related]
26. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040 [TBL] [Abstract][Full Text] [Related]
27. Growth, water and nitrogen relations in grassland model ecosystems of the semi-arid Negev of Israel exposed to elevated CO Grünzweig JM; Körner C Oecologia; 2001 Jul; 128(2):251-262. PubMed ID: 28547474 [TBL] [Abstract][Full Text] [Related]
28. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Nijp JJ; Limpens J; Metselaar K; Peichl M; Nilsson MB; van der Zee SE; Berendse F Glob Chang Biol; 2015 Jun; 21(6):2309-20. PubMed ID: 25580711 [TBL] [Abstract][Full Text] [Related]
29. Carbon dioxide fluxes in a spatially and temporally heterogeneous temperate grassland. Risch AC; Frank DA Oecologia; 2006 Mar; 147(2):291-302. PubMed ID: 16205950 [TBL] [Abstract][Full Text] [Related]
30. Bulk leaf delta(18)O and delta(13)C reflect the intensity of intraspecific competition for water in a semi-arid tussock grassland. Ramírez DA; Querejeta JI; Bellot J Plant Cell Environ; 2009 Oct; 32(10):1346-56. PubMed ID: 19552668 [TBL] [Abstract][Full Text] [Related]
31. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide. Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180 [TBL] [Abstract][Full Text] [Related]
33. Aboveground net primary productivity not CO2 exchange remain stable under three timing of extreme drought in a semi-arid steppe. Zhang H; Yu H; Zhou C; Zhao H; Qian X PLoS One; 2019; 14(3):e0214418. PubMed ID: 30913282 [TBL] [Abstract][Full Text] [Related]
34. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Flanagan LB; Farquhar GD Plant Cell Environ; 2014 Feb; 37(2):425-38. PubMed ID: 23862667 [TBL] [Abstract][Full Text] [Related]
35. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? Fang Q; Wang G; Xue B; Liu T; Kiem A Sci Total Environ; 2018 Sep; 635():1255-1266. PubMed ID: 29710579 [TBL] [Abstract][Full Text] [Related]
36. Direct and indirect effects of elevated atmospheric CO2 on net ecosystem production in a Chesapeake Bay tidal wetland. Erickson JE; Peresta G; Montovan KJ; Drake BG Glob Chang Biol; 2013 Nov; 19(11):3368-78. PubMed ID: 23828758 [TBL] [Abstract][Full Text] [Related]
37. [Net ecosystem CO2 exchange and its environmental regulation mechanisms in a reed wetland in the Yellow River Delta of China during the growth season]. Yang LQ; Han GX; Yu JB; Wu LX; Zhu M; Xing QH; Wang GM; Mao PL Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2415-22. PubMed ID: 24417096 [TBL] [Abstract][Full Text] [Related]
38. Climate warming alters photosynthetic responses to elevated CO Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042 [TBL] [Abstract][Full Text] [Related]
39. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Williams CA; Hanan N; Scholes RJ; Kutsch W Oecologia; 2009 Sep; 161(3):469-80. PubMed ID: 19582479 [TBL] [Abstract][Full Text] [Related]
40. Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass. Hamerlynck EP; Scott RL; Susan Moran M; Schwander AM; Connor E; Huxman TE Oecologia; 2011 Jan; 165(1):17-29. PubMed ID: 20809408 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]