These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 1455798)

  • 1. [The modelling of the cavitation processes during the focusing of the shock wave in an electrodynamic lithotriptor].
    Andriianov IuV; Li AA; Teslenko VS
    Vopr Kurortol Fizioter Lech Fiz Kult; 1992; (4):42-8. PubMed ID: 1455798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.
    Weinberg K; Ortiz M
    Biomech Model Mechanobiol; 2009 Aug; 8(4):285-99. PubMed ID: 18807077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Focal size and shock wave pressure: a comparison of three different physical shock wave generators].
    Janowitz P; Stuber M; Meier T; Steiner R; Schneider HT; Ell C; Neuhaus H; Ott R; Swobodnik W; Kratzer W
    Dtsch Med Wochenschr; 1990 Dec; 115(51-52):1945-9. PubMed ID: 2261859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy.
    Evan AP; Willis LR; McAteer JA; Bailey MR; Connors BA; Shao Y; Lingeman JE; Williams JC; Fineberg NS; Crum LA
    J Urol; 2002 Oct; 168(4 Pt 1):1556-62. PubMed ID: 12352457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The principle of extracorporeal shock wave lithotriptor and its locating system].
    Yin J; Zhong ZL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(2):124-6, 123. PubMed ID: 16104177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What makes a shock wave efficient in lithotripsy?
    Granz B; Köhler G
    J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual pulse shock wave lithotripsy: in vitro and in vivo study.
    Loske AM; Fernández F; Zendejas H; Paredes M; Castaño-Tostado E
    J Urol; 2005 Dec; 174(6):2388-92. PubMed ID: 16280853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices.
    Matula TJ; Hilmo PR; Bailey MR
    J Acoust Soc Am; 2005 Jul; 118(1):178-85. PubMed ID: 16119340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clinical introduction of a third generation lithotriptor: Modulith SL 20.
    Köhrmann KU; Rassweiler JJ; Manning M; Mohr G; Henkel TO; Jünemann KP; Alken P
    J Urol; 1995 May; 153(5):1379-83. PubMed ID: 7714946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy.
    Kodama T; Takayama K
    Ultrasound Med Biol; 1998 Jun; 24(5):723-38. PubMed ID: 9695276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piezocomposite shock wave generator with electronic focusing capability: application for producing cavitation-induced lesions in rabbit liver.
    Tavakkoli J; Birer A; Arefiev A; Prat F; Chapelon JY; Cathignol D
    Ultrasound Med Biol; 1997; 23(1):107-15. PubMed ID: 9080623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of the implosion of ESWL-induced cavitation bubbles.
    Delacrétaz G; Rink K; Pittomvils G; Lafaut JP; Vandeursen H; Boving R
    Ultrasound Med Biol; 1995; 21(1):97-103. PubMed ID: 7754583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Complications of extracorporeal shockwave lithotripsy].
    Fuchs GJ; David RD; Fuchs AM
    Arch Esp Urol; 1989; 42 Suppl 1():83-9. PubMed ID: 2699550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.
    Tham LM; Lee HP; Lu C
    J Urol; 2007 Jul; 178(1):314-9. PubMed ID: 17499770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The Wolf piezolith 2300 lithotriptor: a technical note].
    Ruoppolo M; Bellorofonte C; Tombolini P
    Arch Ital Urol Nefrol Androl; 1989 Dec; 61(4):373-8. PubMed ID: 2532401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Extra-corporal shock wave lithotripsy using the HM3 Dornier lithotripter with a modified shock wave generator. Initial clinical reports of experiences].
    Muschter R; Kutscher KR; Böhle A; Schmeller NT; Renner P; Bünner G; Hofstetter AG; Hofsäss S; Forssmann B
    Urologe A; 1987 Jan; 26(1):33-5. PubMed ID: 3576862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical tests on reno-ureteral lithiasis with a new Lithostar 2 model C shock wave generator system].
    Mappes C; Witzsch U; Bürger RA; Hohenfellner R
    Ann Urol (Paris); 1994; 28(2):53-6. PubMed ID: 8210210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shock wave sensors: I. Requirements and design.
    Lewin PA; Schafer ME
    J Lithotr Stone Dis; 1991 Jan; 3(1):3-17. PubMed ID: 10149140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.