These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 14558646)

  • 1. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of subchondral bone adaptation to mechanical loading in an incongruous joint.
    Jacobs CR; Eckstein F
    Anat Rec; 1997 Nov; 249(3):317-26. PubMed ID: 9372165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone.
    Wang Y; Wei HW; Yu TC; Cheng CK
    Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congruency effects on load bearing in diarthrodial joints.
    Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2016 Jul; 49(10):2053-2059. PubMed ID: 27260020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading.
    Argatov I; Mishuris G
    J Biomech; 2011 Feb; 44(4):759-61. PubMed ID: 21093864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal contact of elastic spheres with two elastic layers as a model of joint articulation.
    Eberhardt AW; Lewis JL; Keer LM
    J Biomech Eng; 1991 Nov; 113(4):410-7. PubMed ID: 1762438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical environment of chondrocytes in articular cartilage.
    Adams MA
    Biorheology; 2006; 43(3,4):537-45. PubMed ID: 16912425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tension and bending, but not compression alone determine the functional adaptation of subchondral bone in incongruous joints.
    Eckstein F; Merz B; Schön M; Jacobs CR; Putz R
    Anat Embryol (Berl); 1999 Jan; 199(1):85-97. PubMed ID: 9924938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage.
    Wei HW; Sun SS; Jao SH; Yeh CR; Cheng CK
    Med Eng Phys; 2005 May; 27(4):295-304. PubMed ID: 15823470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in mechanical behaviour of articular cartilage due to changes in depth varying material properties--a nonhomogeneous poroelastic model study.
    Li LP; Shirazi-Adl A; Buschmann MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):45-52. PubMed ID: 12186733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of cartilage cap modelling on FEM simulation of femoral head stress].
    Schmitt J; Meiforth J; Lengsfeld M
    Biomed Tech (Berl); 2001; 46(1-2):29-33. PubMed ID: 11258139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high frequencies.
    Fulcher GR; Hukins DW; Shepherd DE
    BMC Musculoskelet Disord; 2009 Jun; 10():61. PubMed ID: 19497105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading.
    Ko FC; Dragomir CL; Plumb DA; Hsia AW; Adebayo OO; Goldring SR; Wright TM; Goldring MB; van der Meulen MC
    J Orthop Res; 2016 Nov; 34(11):1941-1949. PubMed ID: 26896841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission of rapidly applied loads through articular cartilage. Part 1: Uncracked cartilage.
    Kelly PA; O'Connor JJ
    Proc Inst Mech Eng H; 1996; 210(1):27-37. PubMed ID: 8663890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.
    Butz KD; Chan DD; Nauman EA; Neu CP
    J Biomech; 2011 Oct; 44(15):2667-72. PubMed ID: 21920526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.