BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 14558652)

  • 21. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of blood flow patterns in human arteries.
    Xu XY; Long Q; Collins MW; Bourne M; Griffith TM
    Proc Inst Mech Eng H; 1999; 213(5):411-21. PubMed ID: 10581968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational simulations and experimental studies of 3D phase-contrast imaging of fluid flow in carotid bifurcation geometries.
    Marshall I
    J Magn Reson Imaging; 2010 Apr; 31(4):928-34. PubMed ID: 20373438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound.
    Glor FP; Ariff B; Hughes AD; Crowe LA; Verdonck PR; Barratt DC; McG Thom SA; Firmin DN; Xu XY
    Physiol Meas; 2004 Dec; 25(6):1495-509. PubMed ID: 15712727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions.
    Papathanasopoulou P; Zhao S; Köhler U; Robertson MB; Long Q; Hoskins P; Xu XY; Marshall I
    J Magn Reson Imaging; 2003 Feb; 17(2):153-62. PubMed ID: 12541221
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MR imaging of flow through tortuous vessels: a numerical simulation.
    van Tyen R; Saloner D; Jou LD; Berger S
    Magn Reson Med; 1994 Feb; 31(2):184-95. PubMed ID: 8133754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary study of hemodynamics in human carotid bifurcation by computational fluid dynamics combined with magnetic resonance angiography.
    Xue Y; Gao P; Lin Y; Dai C
    Acta Radiol; 2007 Sep; 48(7):788-97. PubMed ID: 17729012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemodynamics analyses in treated and untreated carotid arteries of the same patient: A preliminary study based on three patient cases.
    Mei Y; Müller-Eschner M; Yi J; Zhang Z; Chen D; Kronlage M; von Tengg-Kobligk H; Kauczor HU; Böckler D; Demirel S
    Biomed Mater Eng; 2015; 26 Suppl 1():S299-309. PubMed ID: 26406016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation.
    Younis HF; Kaazempur-Mofrad MR; Chung C; Chan RC; Kamm RD
    Ann Biomed Eng; 2003 Sep; 31(8):995-1006. PubMed ID: 12918914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric radial expansion and contraction of rat carotid artery observed using a high-resolution ultrasound imaging system.
    Nam KH; Bok TH; Jin C; Paeng DG
    Ultrasonics; 2014 Jan; 54(1):233-40. PubMed ID: 23664377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proposition of an outflow boundary approach for carotid artery stenosis CFD simulation.
    Zhang Y; Furusawa T; Sia SF; Umezu M; Qian Y
    Comput Methods Biomech Biomed Engin; 2013; 16(5):488-94. PubMed ID: 22288780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acquisition of 3-D arterial geometries and integration with computational fluid dynamics.
    Hammer S; Jeays A; Allan PL; Hose R; Barber D; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Dec; 35(12):2069-83. PubMed ID: 19828230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?
    Moyle KR; Antiga L; Steinman DA
    J Biomech Eng; 2006 Jun; 128(3):371-9. PubMed ID: 16706586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of vessel wall elasticity and peripheral resistance on the carotid artery flow wave form: a CFD model compared to in vivo ultrasound measurements.
    Maurits NM; Loots GE; Veldman AE
    J Biomech; 2007; 40(2):427-36. PubMed ID: 16464454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational simulation of carotid stenosis and flow dynamics based on patient ultrasound data - A new tool for risk assessment and surgical planning.
    Sousa LC; Castro CF; António CC; Sousa F; Santos R; Castro P; Azevedo E
    Adv Med Sci; 2016 Mar; 61(1):32-9. PubMed ID: 26355739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of shear stress on the wall of the carotid artery using magnetic resonance imaging and computational fluid dynamics.
    Yim P; Demarco K; Castro MA; Cebral J
    Stud Health Technol Inform; 2005; 113():412-42. PubMed ID: 15923751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.