These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 14558691)
1. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Steiner-Lange S; Fischer A; Boettcher A; Rouhara I; Liedgens H; Schmelzer E; Knogge W Mol Plant Microbe Interact; 2003 Oct; 16(10):893-902. PubMed ID: 14558691 [TBL] [Abstract][Full Text] [Related]
2. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. Schürch S; Linde CC; Knogge W; Jackson LF; McDonald BA Mol Plant Microbe Interact; 2004 Oct; 17(10):1114-25. PubMed ID: 15497404 [TBL] [Abstract][Full Text] [Related]
3. Heterologous expression of the avirulence gene product, NIP1, from the barley pathogen Rhynchosporium secalis. Gierlich A; van 't Slot KA; Li VM; Marie C; Hermann H; Knogge W Protein Expr Purif; 1999 Oct; 17(1):64-73. PubMed ID: 10497070 [TBL] [Abstract][Full Text] [Related]
5. Cytological and molecular analysis of the Hordeum vulgare-Puccinia triticina nonhost interaction. Neu C; Keller B; Feuillet C Mol Plant Microbe Interact; 2003 Jul; 16(7):626-33. PubMed ID: 12848428 [TBL] [Abstract][Full Text] [Related]
6. Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Able AJ Protoplasma; 2003 May; 221(1-2):137-43. PubMed ID: 12768351 [TBL] [Abstract][Full Text] [Related]
7. Fungal avirulence genes: structure and possible functions. Laugé R; De Wit PJ Fungal Genet Biol; 1998 Aug; 24(3):285-97. PubMed ID: 9756710 [TBL] [Abstract][Full Text] [Related]
9. Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Freymark G; Diehl T; Miklis M; Romeis T; Panstruga R Mol Plant Microbe Interact; 2007 Oct; 20(10):1213-21. PubMed ID: 17918623 [TBL] [Abstract][Full Text] [Related]
10. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. Rohe M; Gierlich A; Hermann H; Hahn M; Schmidt B; Rosahl S; Knogge W EMBO J; 1995 Sep; 14(17):4168-77. PubMed ID: 7556057 [TBL] [Abstract][Full Text] [Related]
11. Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Hahn M; Jüngling S; Knogge W Mol Plant Microbe Interact; 1993; 6(6):745-54. PubMed ID: 8118056 [TBL] [Abstract][Full Text] [Related]
12. The white barley mutant albostrians shows a supersusceptible but symptomless interaction phenotype with the hemibiotrophic fungus Bipolaris sorokiniana. Schäfer P; Hückelhoven R; Kogel KH Mol Plant Microbe Interact; 2004 Apr; 17(4):366-73. PubMed ID: 15077669 [TBL] [Abstract][Full Text] [Related]
13. Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Gjetting T; Hagedorn PH; Schweizer P; Thordal-Christensen H; Carver TL; Lyngkjaer MF Mol Plant Microbe Interact; 2007 Mar; 20(3):235-46. PubMed ID: 17378426 [TBL] [Abstract][Full Text] [Related]
14. A single binding site mediates resistance- and disease-associated activities of the effector protein NIP1 from the barley pathogen Rhynchosporium secalis. van't Slot KA; Gierlich A; Knogge W Plant Physiol; 2007 Jul; 144(3):1654-66. PubMed ID: 17478637 [TBL] [Abstract][Full Text] [Related]
15. The origin and colonization history of the barley scald pathogen Rhynchosporium secalis. Brunner PC; Schürch S; McDonald BA J Evol Biol; 2007 Jul; 20(4):1311-21. PubMed ID: 17584226 [TBL] [Abstract][Full Text] [Related]
17. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Liu G; Sheng X; Greenshields DL; Ogieglo A; Kaminskyj S; Selvaraj G; Wei Y Mol Plant Microbe Interact; 2005 Jul; 18(7):730-41. PubMed ID: 16042019 [TBL] [Abstract][Full Text] [Related]
18. Pathotype and microsatellite analyses reveal new sources of resistance to barley scald in Tunisia. Bouajila A; Zoghlami N; Ghorbel A; Rezgui S; Yahyaoui A FEMS Microbiol Lett; 2010 Apr; 305(1):35-41. PubMed ID: 20180856 [TBL] [Abstract][Full Text] [Related]
19. Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Elvira MI; Galdeano MM; Gilardi P; García-Luque I; Serra MT J Exp Bot; 2008; 59(6):1253-65. PubMed ID: 18375936 [TBL] [Abstract][Full Text] [Related]
20. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Joosten MH; Cozijnsen TJ; De Wit PJ Nature; 1994 Jan; 367(6461):384-6. PubMed ID: 8114941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]